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Abstract: Advances in whole slide imaging technology have promoted a high use of digital slide images and generated a large 

volume of image data that is reliable and useful in determining treatment outcome. Recent technologies closely related to 

machine learning and deep learning algorithms have contributed to the success of digital histopathology by analyzing the 

digitized slide images providing quantitative information that are useful for faster turnaround times and effective treatment for 

the patient. The digital histopathological image analysis has received much attention due to its capability of mitigating the 

problem of the hand-crafted features. Features directly learned from raw data are trainable within the deep learning procedure 

and can be used for the histopathology image classification task. However, understanding the spatial context of cancer cells is 

still a challenging issue because of the heterogeneity of the tumor microenvironment which varies greatly, preventing successful 

diagnosis and leads to inappropriate therapeutic approaches for cancer patients. In this paper, we present a spatial analysis 

method for tumor microenvironment analysis using the U-Net architecture, a semantic segmentation deep-learning model, for a 

better understanding of the spatial relations between tissue types. We demonstrate the effectiveness of the U-Net architecture 

using a dataset created by an international crowdsourcing study. Moreover, we show that the quantitative estimates can be 

derived from the univariate spatial analysis. 
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1. Introduction 

Whole slide imaging is an imaging technology that 

produces high-resolution digital images from microscopic 

slides [1]. Recent advances in whole slide imaging technology 

have enabled microscopes to digitize an entire glass slide 

within a few minutes, generating a large volume of image data 

that is highly reliable and useful in determining treatment 

outcome [2]. As a result, whole-slide image (WSI) analysis 

has become increasingly common in clinical and basic science 

investigations. 

Machine learning (ML) techniques have been successfully 

employed in the detection, diagnosis, treatment, and 

prevention of human cancers, and promoted the transition of 

modern pathology [3]. ML-based approaches for analyzing 

tissue samples obtained for the microscopic examination can 

provide satisfactory outcomes and validated clinical 

prediction, while specialized software tools with onboard ML 

can assure faster turnaround times in a quantitative analysis of 

WSIs [4-7]. The ML-based approaches help to provide 

definitive diagnoses and effective treatments in digital 

histopathology. 

Recently, deep learning features using deep convolutional 

neural networks (DCNNs) have received much attention in the 

digital histopathological image analysis due to their capability 

of mitigating the problems of the hand-crafted features [8, 9]. 

While hand-crafted features rely on explicit algorithms 

requiring large efforts for novel datasets, features directly 
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learned from raw data are trainable within DCNNs and can be 

automatically transformed for use in the histopathological 

image analysis. Features trained by DCNNs provide better 

accuracy through convolution and pooling layers, followed by 

a fully connected layer for the histopathology image 

classification task [10-13]. 

 

Figure 1. Overview of the U-Net based pixel-wise region prediction. (a) Whole slide imaging process to produce multi-resolution pyramid style images. (b) 

Region of interest selction. An international crowdsourding study was adopted for the region selection. (c) Pipeline for pixel-wise region prediction. U-Net was 

used for training and the pixel-wise region prediction. 

Involving domain experts in validating DCNN models is 

associated with human error or bias [14, 15]. Furthermore, 

labeling sufficient training samples to ensure accurate 

classification for hundreds-of-millions of histologic structures 

is a very time-consuming or laborious task, causing a 

significant delay in the diagnostic process [16, 17]. Key 

challenges in the WSI analysis using ML are 1) developing an 

automatic DCNN method to minimize human bias 2) 

enhancing the DCNN capabilities through spatial analysis. 

Meanwhile, cancer researchers have investigated malignant 

tumors in microenvironmental conditions for effective cancer 

detection [18, 19]. With the advances in the whole slide 

imaging technologies, cancer researchers can now create 

numerous digitized high-resolution quickly, improving the 

cancer detection and diagnosis for precise treatment and 

functional monitoring of cancer. However, understanding the 

spatial context of cancer cells is still a challenging issue 

because of the heterogeneity of the tumor microenvironment 

that varies greatly, preventing successful diagnosis and 

leading to wrong therapeutic approaches for cancer patients. 

In this paper, we present a spatial analysis method for tumor 

microenvironment analysis using the U-Net architecture, a 

semantic segmentation deep-learning model, for a better 

understanding of the spatial relations between tissue types. 

The main contributions of this paper are; 1) we present a 

U-Net based cancer detection method and 2) we propose a 

univariate spatial analysis method that can be used for an 

effective prognostic biomarker. The rest of the paper will be 

organized as below. Section 2 describes the detection 

procedure of tumor and tumor-infiltrating lymphocytes (TILs) 

using the U-Net. Section 3 presents our spatial analysis 

method of the detected regions in whole slide images. Section 

4 shows the performance results of the tumor and TIL 

detection and demonstrates the advantages of the quantitative 

estimates derived from the univariate spatial analysis. 

2. U-Net Based Cancer Classification 

2.1. Whole Slide Imaging 

Tissue specimens obtained in the surgical pathology 

laboratory are usually mounted on a thin flat piece of glass. 

The glass slide is then digitized by the microscope slide 

scanners producing reliable and high-resolution images of 

tissue samples in a few minutes and potentially aiding 

biological scientists in interpreting histopathological whole 

slide images. Whole slide image analysis has been 

successfully exploited in the histological image interpretation 

throughout this procedure. The digitized whole slide images 

from the microscope slide scanners can be employed to obtain 

meaningful features prognostically related to tissue specificity 

can be stimulated by histological, solving the problem of 

observer variability and reducing the workload of pathologists 

[20, 21]. In this paper, we obtained hematoxylin and 

eosin-stained formalin-fixed paraffin-embedded (FFPE) 

sections of histopathology whole slide images of breast 

invasive carcinoma from The Cancer Genome Atlas at the 

Genomic Data (TCGA) [22]. 

2.2. Region Selection 

Traditional approaches to select interesting regions in whole 

slide images have been done by pathologists involved in the 

project. However, they often cause the problem of observer 

variability and are not generalized well because it requires 

many experiences related to the tissue section and is difficult to 

share their knowledge with others. In order to avoid the 
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problems, we selected an annotated dataset created by an 

international crowdsourcing study [23]. In the study, the regions 

were selected by the combined effort of a medical doctor and a 

coordinator, and then approved by senior resident. In this paper, 

we selected the regions for the evaluation performance. 

2.3. Cancer Classification Using U-Net 

U-Net is a U-shaped network model that performs a 

semantic segmentation of biomedical images by using a Fully 

Convolutional Network (FCN) [24]. U-Net was firstly 

introduced to perform a cell segmentation in microscopic 

images by Ronneberger et al. [25]. The basic idea of U-Net is 

to provide a supplement network in each successive layer so 

that these layers contain the local information of 

high-resolution features by modifying the FCN. The U-Net 

architecture is similar to a traditional convolutional neural 

network but it captures context information in high-resolution 

layers that promote accurate localization. Table 1 shows the 

modified U-Net architecture used in this paper. Our method 

adopted U-Net architecture to detect cancerous regions in 

whole-slide images. The overall process of the U-Net based 

cancer prediction is shown in Figure 1. 

Table 1. Modified U-Net architecture layers [17]. 

Layer (type) Output Shape Parameter 

Input Layer (128,128,3) 0 

Lambda (128,128,3) 0 

Conv2D (128,128,16) 448 

Dropout (128,128,16) 0 

Conv2D (128,128,16) 2320 

MaxPooling2D (64,64,16) 0 

Conv2D (64,64,32) 4640 

Dropout (64,64,32) 0 

Conv2D (64,64,32) 9248 

MaxPooling2D (32,32,32) 0 

Conv2D (32,32,64) 18496 

Dropout (32,32,64) 0 

Conv2D (32,32,64) 36982 

MaxPooling2D (16,16,64) 0 

Conv2D (16,16,128) 73856 

Dropout (16,16,128) 0 

Conv2D (16,16,128) 147584 

MaxPooling2D (8,8,128) 0 

Conv2D (8,8,256) 295168 

Dropout (8,8,256) 0 

Conv2D (8,8,256) 590080 

Conv2DTrans (16,16,128) 131200 

Concatenate (16,16,256) 0 

Conv2D (16,16,128) 295040 

Dropout (16,16,128) 0 

Conv2D (16,16,128) 147584 

Conv2DTrans (32,32,64) 32832 

Concatenate (32,32,128) 0 

Conv2D (32,32,64) 73792 

Dropout (32,32,64) 0 

Layer (type) Output Shape Parameter 

Conv2D (32,32,64) 36928 

Conv2DTrans (64,64,32) 8224 

Concatenate (64,64,64) 0 

Conv2D (64,64,32) 18464 

Dropout (64,64,32) 0 

Conv2D (64,64,32) 9348 

Conv2DTrnas (128,128,16) 2064 

Concatenate (128,128,32) 0 

Conv2D (128,128,16) 4624 

Dropout (128,128,16) 0 

Conv2D (128,128,16) 2320 

Conv2D (128,128,1) 17 

3. Spatial Analysis Using U-Net 

The completion of the semantic segmentation deep learning 

approach can leverage the spatial analysis for the quantified 

whole slide images. Common approaches on the spatial 

analysis methods merely generate a density map for each 

image with all features already predicted. However, it is not 

common to analyze the spatial characteristics in the entire 

regions of the whole slide images. The challenging issues are 

1) how to generalize the pixel-wise predicted regions beyond 

uniform maps of whole slide images and 2) how to create a 

density map representation using the predicted regions. We 

use the whole slide regions predicted by the U-Net and 

consider the Getis-Ord-Gi* statistic to create a density map 

representation of spatial data [26, 27]. The Getis-Ord-Gi* 

statistic is a well-known hot spot analysis method that 

provides a statistically significant hotspot region with the 

relatedness of its neighbors. We compute the density of each 

square region by the Getis-Ord-Gi* statistic. The 

mathematical equation of the statistic Gi for the whole slide 

image is given by 

	�� = ∑ ��,	
	�	�
 ��������
���������������������/�����

         (1) 

where ��  represents the attribute value for a square region j. 
��,� represents the spatial weight between two regions �i, j�. n 

is the total number of square tessellation regions in a whole slide 

image. ��� = ∑ !�,����"� , �� = ∑ !�,���"� , #��$� =
∑ ����"� /�% − 1� , and 

(�$� = ��∑ ���/�% − 1��"� �� − �#��$��� where 	$ ≠ *  and 

!�,� ≠ 0. Thus, the standardized Gi* for each whole slide 

image in the spatial analysis is given by 

��∗ = �∑ !�,��� −��∗#���"� �/(-�%���∗ − ���∗���/�% − 1�	 (2) 

where ���∗ = ∑ !�,����"� , ��∗ = ∑ !�,���"� , #��$� = ∑ ����"� /%, 

and S = ��∑ ���/%��"� � − �#��� . Therefore, by equation (2), 

the Getis-Ord-Gi* statistic can be involved in univariate 

spatial analysis of whole slide images. 
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Figure 2. Prediction results on tumor and TILs. Left to right: slide name, annotated regions for tumor and TILs, tumor prediction, and TILs prediction. 
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Figure 3. Heatmaps generated by Getis-Ord-Gi* Left to right: whole slide image, tumor heatmap, and TILs heatmap. 

4. Performance Results 

In this section, we demonstrate the effectiveness of our 

work. First of all, we perform the AUCROC measurement on 

both Tumor and TILs predictions. Next, we perform spatial 

analysis using the prediction results. We used 151 

hematoxylin and eosin-stained whole-slide images from [23] 

which are images of formalin-fixed paraffin-embedded tissues 

obtained from the Cancer Genome Atlas. 

 

Figure 4. AUCROC results. Left: AUCROC variation on tumor prediction. Right: AUCROC variation on TILs prediction. 

4.1. Results on Cancer Classification Using U-Net 

The Area Under the Curve (AUC) and the Receiver 

Operating Characteristics (ROC) curve are well-known 

performance measurements for classification problems. In 

general, the ROC curve plots the True Positive Rate (TPR) 

with the False Positive Rate (FPR) in two-dimensional space 

such that the area under the curve plotted represents how the 

classification model is suitable for distinguishing between 

classes. We selected 74 annotated hematoxylin and 

eosin-stained images for the training purpose and 42 annotated 

images for the test purpose among the 151 annotated images. 

Figure 2 shows the prediction results on tumor and TILs. In 

the second column, the yellow color represents the tumor 

annotation while the green color represents the TILs 
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annotation. Predictions are displayed as heatmaps in the third 

and the fourth columns. The heatmaps represent the prediction 

probabilities for tumor and TILs respectively. The AUCROC 

results are shown in Figure 4. Since the prediction results vary 

in the training set, we have investigated the prediction 

variation by selecting random samples in the training set and 

increasing the sample numbers. In Figure 4, the x-axis 

represents the number of square regions (128x128x3) selected 

for training and the y-axis represents the AUCROC results 

between 0 and 100. We found that the AUCROC results of the 

tumor prediction with a small number of training samples 

indicate the high AUCROC variance. However, in the case of 

the AUCROC results of the TILs prediction, the small number 

of training samples doesn’t always indicate the high 

AUCROC variance. 

4.2. Results on Spatial Analysis 

In Section 4.1, we conducted a performance evaluation on 

tumor and TILs prediction rather than on the whole slide 

images but on the selected regions. In this section, we will 

show how our spatial analysis can be used on the whole-slide 

image predictions. In order to perform the whole slide image 

prediction, we created two models trained from the 151 

images in the dataset [23]. Each model was created for the 

tumor and TILs predictions on the whole slide level 

respectively. After the prediction, the heatmap images were 

generated by the Getis-Ord-Gi* statistic. We used z-scores of 

the Getis-Ord-Gi* statistic to measure Spearman rank 

correlation between immune hot regions and immune cold 

regions. We used the proposed univariate spatial analysis 

method to distinguish two regions: immune hot and immune 

cold. The immune hot regions represent the large TILs 

prediction, while the immune cold regions represent the small 

TILs prediction. Figure 3 shows the spatial analysis results on 

the whole slide images. The second and third columns 

represent the immune hot/cold region corresponding to the 

tumor and TILs. The z-scores computed by Getis-Ord-Gi* 

statistic are displayed in the bottom right of each figure. 

5. Conclusion 

In this paper, we presented a pixel-wise region detection 

method on whole slide images using a semantic segmentation 

deep-learning model called U-Net. The U-Net architecture 

showed good results on the tumor and TILs classification 

measured in AUCROC. In addition to the prediction of the 

tumor and TILs, we proposed a spatial analysis method using 

Getis-Ord-Gi* for a better understanding of the spatial 

relations between tissue types. We demonstrated the 

effectiveness of the U-Net architecture using a dataset created 

by an international crowdsourcing study. Moreover, we 

showed that the quantitative estimates can be derived from the 

univariate spatial analysis. 

Although we have presented the spatial analysis method on 

the whole slide images using U-Net, out method is limited to 

investigating TILs and didn’t explore other types of cells in 

the tumor microenvironment. We plan to perform the spatial 

analysis targeting tumor-stroma interactions that would 

improve treatment response.  
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