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Abstract: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with progressive 

worsening of dyspnea and lung function. The etiology of IPF is unknown, and the pathogenesis remains unclear. Our study aimed 

to investigate the key genes of the peripheral blood mononuclear cell in IPF by bioinformatics analysis. Our study used the online 

Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE28042 to identify differentially expressed genes 

(DEGs) between IPF patients and healthy controls. We performed the Gene Ontology (GO) and pathway enrichment analyses of 

genes for annotation, visualization, and integrated discovery. The STRING database constructed Protein-protein interaction (PPI) 

network analysis, and hub genes were identified by the CytoHubba plugin. Moreover, we used the receiver operating 

characteristic (ROC) curve to assess the diagnostic value of the hub genes. In total, 28 upregulated and 44 downregulated genes 

were identified in the differential expression analysis. The protein-protein interaction network (PPI) was established with 69 

nodes and 68 edges. The top 10 hub genes were JUN, FOS, STAT3, SOCS3, JUNB, DUSP1, IL4, FCER1A, MS4A2, and CPA3. 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for the important module containing hub genes 

contained Fc epsilon RI signaling pathway, TNF signaling pathway, Jak-STAT signaling pathway, and MAPK signaling pathway. 

Additionally, the identified hub genes show high functional similarity and diagnostic value in IPF. Our study used bioinformatics 

analysis to provide new insight into the mechanisms underlying IPF. However, more experiments are needed to explore the 

relationships between the top 10 hub genes and IPF in the future. 
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1. Introduction 

Idiopathic pulmonary fibrosis (IPF) is defined as a specific 

form of chronic, progressive fibrosing interstitial pneumonia 

and its cause is unknown [1]. Its clinical features are 

unexplained exertional dyspnea, chronic dry cough, or Velcro 

rale on examination [2]. The histopathology of this disease is 

interstitial fibrosis with spatial heterogeneity and patchy 

involvement of lung parenchyma, and microscopic 

honeycombing [3]. The incidence of IPF is high and its 

incidence rates increased over time in most countries. Its 

incidence ranges from 0.2 per 100000 per year to 93.7 per 

100000 per year based on estimates from Europe and North 

America [4]. Besides, median survival from the time of 

diagnosis is only 2.5 to 3.5 years [5]. Currently, the risk factors 

of IPF are environmental, genetic, epigenetic alterations, and 

aging [6]. However, the pathogenesis is still not exact. 

So far, understanding of the pathogenesis of IPF includes 

epithelial cell dysfunction caused by genetic susceptibility, 

defined profibrotic processes caused by TGF-beta activation, 

and progressive pulmonary fibrosis [7, 8]. However, recent 

studies have shown that epithelial cell dysfunction is still a 

central cause of IPF [7]. Currently, the diagnosis of IPF 

requires exclusion of other known causes of interstitial disease 

(ILD), high-resolution, and surgical lung biopsy [1].
 
However, 

the accuracy of the diagnosis of IPF requires experienced 
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physicians, which has certain limitations. IPF patients are 

usually in the terminal stages of the disease when diagnosed 

and there is no particularly effective treatment at this point. 

Therefore, early diagnosis and early treatment were most 

important. 

Bioinformatics analyses can enable researchers to search 

online biological databases to explore the pathogenesis and 

molecular diagnosis, such as juvenile dermatomyositis [9], 

major depressive disorder [10], Tuberculosis [11]. Here, we 

use the peripheral blood mononuclear cell (PBMC) microarray 

dataset GSE28042 created by Herazo-Maya et al. to 

investigated the differentially expressed genes (DEGs) 

between IPF patients and healthy controls to explore the key 

genes. Our findings will provide new insights into the clinical 

diagnosis and treatment of IPF. 

2. Materials and Methods 

2.1. Microarray Data 

The microarray data of GSE28042 was downloaded from 

the Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih,gov/geo/) database. The dataset was 

based on the GPL6480 Agilent-014850 Whole Human 

Genome Microarray 4x44K G4112F (Probe Name Version). 

The data type was expression profiling by the array and the 

species selected was Homo sapiens. The peripheral blood 

mononuclear cell samples (PBMC) included 75 patients with 

the diagnosis of IPF (IPF group) and 19 healthy controls 

(control group). The clinical details of GSE28042 were listed 

(Table 1). The annotation file for GPL6480 was also 

downloaded from the GEO. 

Table 1. Clinical information of GSE28042 included cases. 

 All subjects IPF group Control group 

Patients 94 75 19 

Gender    

Male 64 52 12 

Female 30 23 7 

Age (years) 65.84±10.63 69.00±8.16 53.37±10.23 

2.2. Analysis of Differentially Expressed Genes (DEGs) 

We used the online analysis tool GEO2R 

(http://www.ncbi.nlm.nih.gov/geo/geo2r/) to screen the DEGs 

between the IPF group and the control group. The GEO2R can 

allow us to compare two or more groups of samples to identify 

genes that are differentially expressed across experimental 

conditions. The results are presented as a table of genes 

ordered by significance. To exclude gender differences, we 

divided the IPF group and the control group into two groups 

(Male IPF group, Female IPF group, Male control group, 

Female control group), respectively, depending on the gender. 

P-values and adjusted P-values (adj. p) were calculated using 

t-tests. Genes with log2 fold change (FC) >1 and adj. p <0.05 

were identified as DEGs. A Venn diagram of DEGs was drawn 

using the online tool Venny 2.1 

(http://bioinfogp.cnb.csic.es/tools/venny/). The heatmap for 

the DEGs was created using R software (version 4.0.2). 

2.3. Gene Ontology (GO) and Pathway Enrichment Analysis 

of DEGs 

GO, a bioinformatics tool aims to establish a vocabulary 

that defines and describes the functions of genes and proteins 

for a variety of species. GO is divided into three parts: 

Molecular Function (MF), Biological Process (BP), and 

Cellular Component (CC) [12]. KEGG (Kyoto Encyclopedia 

of Genes and Genomes) is a database that systematically 

analyzes the metabolic pathways of gene products in cells and 

their functions [13]. KEGG integrates data on genomes, 

chemical molecules, and biochemical systems, including 

metabolic pathways, drugs, diseases, genes, and genomes [13]. 

The Database for Annotation, Visualization, and Integrated 

Discovery (DAVID; http://david.ncifcrf.gov; version 6.8) is a 

free online biological information database and it provides a 

comprehensive set of functional annotation tools for 

researchers to understand biological meaning behind a large 

list of genes. We performed GO and KEGG pathway 

enrichment analyses using the DAVID online database to 

analyze the function of DEGs. P-value <0.05 was set as the 

cut-off criteria. 

2.4. Protein-protein Interaction (PPI) Network Analysis and 

Module Analysis 

A significant number of proteins do not function alone. 

Proteins interact with each other to form complexes that then 

do their work. We used the Search Tool for the Retrieval of 

Interacting Genes (STRING; https://string-db.org/; version 

11.0) online database to systematically predict and construct a 

PPI network of all DEGs. A combined score >0.4 of PPI pairs 

was regarded as a significant interaction. Cytoscape (version 

3.8.0), a bioinformatic software available online, can be used 

to construct and visualize the network of PPI. MCODE 

(version 1.5.1), a plugin of Cytoscape software, can construct 

functional modules by clustering in a large network of PPI. 

CytoHubba, mainly used for exploring PPI network hub genes, 

is a Cytoscape plugin. We selected the genes with the highest 

ranking by the maximum correlation criterion (MCC). The 

selected genes are represented by redder color. 

2.5. Go and Pathway Enrichment Analysis of Hub Genes 

To analyze the function of hub genes, biological analyses 

were performed using the DAVID online database. P-value 

<0.05 was set as the cut-off criteria. 

2.6. Hub Genes Diagnostic Efficacy Evaluation 

The receiver operating characteristic (ROC) curve can be 

used to assess the diagnostic accuracy. We use the “pROC” 

package of the R software to plot the ROC curve, calculate the 

area under the curve (AUC) and evaluate the diagnostic 

capability of hub genes to distinguish IPF patients and healthy 

controls. 

2.7. Statistical Analysis 

All statistical analyses were performed as the 
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means±standard deviation. The R software (version 4.0.2) was 

used to analyze the data. A P-value <0.05 was considered 

statistically significant. 

3. Results 

3.1. Differentially Expressed Genes 

We downloaded the microarray expression dataset 

GSE28042 from the GEO database and analyzed the DEGs 

between IPF patients and healthy controls using the GEO2R 

tool. In total, 107 upregulated and 244 downregulated genes 

were identified between male IPF patients and male healthy 

controls. Besides, 54 upregulated and 212 downregulated 

genes were identified between female IPF patients and female 

healthy controls. The intersection of these two datasets 

identified 28 upregulated and 44 downregulated genes (Table 

2). The Venn diagram and heatmap for the DEGs are presented 

in Figure 1. 

Table 2. Differentially expressed genes of IPF. 

Gene Symbol ID 
adj. P. Val P. Value 

male female male female 

Upregulated genes 

AP1S1 A_23_P157404 0.000121 0.0297 0.000001 0.000515 

AP1S1 A_24_P63950 0.000674 0.0262 0.0000156 0.000391 

AP5B1 A_24_P9883 0.000151 0.0037 0.00000139 0.00000307 

APOL6 A_24_P941167 0.00146 0.0367 0.0000538 0.000798 

COQ10B A_32_P1192 0.00116 0.0299 0.0000369 0.00052 

DUSP1 A_23_P110712 0.0000000888  0.0179 0.0000000000329  0.000163 

EMP1 A_24_P921446 0.0000652 0.0225 0.000000357 0.000262 

FAM20A A_32_P108254 0.00000741 0.0244 0.0000000132  0.000314 

FAM20A A_24_P352952 0.0000433 0.023 0.00000019 0.000278 

FCAR A_24_P348265 0.0000142 0.0132 0.0000000356  0.0000787 

FOS A_23_P106194 0.00000000612  0.000409 0.000000000001  0.0000000824  

GSTT2 A_23_P109427 0.00684 0.0173 0.000523 0.000151 

JUN A_23_P201538 0.00000000514  0.00507 0.00000000000069  0.0000074 

JUNB A_24_P241815 0.0000117 0.0139 0.0000000255  0.000091 

LMNB1 A_23_P258493 0.00227 0.0305 0.000103 0.000545 

MBD2 A_24_P119201 0.000408 0.0471 0.00000652 0.00148 

PDAP1 A_23_P151198 0.00216 0.0382 0.0000948 0.000884 

PDK4 A_23_P257087 0.00119 0.0128 0.0000386 0.0000717 

PDK4 A_24_P243749 0.00132 0.00476 0.0000465 0.00000655 

PEAK1 A_24_P933801 0.000244 0.0081 0.00000299 0.0000188 

PER1 A_24_P93916 0.00000534 0.0126 0.00000000824  0.0000641 

RHOB A_23_P51136 0.00000000749  0.00363 0.00000000000176  0.00000268 

SERPINB2 A_23_P153185 0.000491 0.0159 0.00000886 0.000127 

SLED1 A_24_P927716 0.0001 0.0346 0.000000721 0.000711 

SOCS3 A_23_P207058 0.000000918 0.0111 0.000000000694  0.0000478 

SOCS3 A_23_P351069 0.0000018 0.00738 0.0000000017  0.0000129 

SOD2 A_24_P935819 0.0000179 0.0226 0.000000051 0.000265 

SRGN A_24_P915269 0.0000000042  0.00287 0.000000000000259  0.00000154 

STAC3 A_23_P10947 0.00000318 0.0081 0.00000000384  0.0000186 

STAT3 A_24_P923962 0.0001 0.0108 0.000000715 0.0000403 

TEX14 A_32_P126079 0.00395 0.0181 0.000235 0.000175 

TMEM107 A_23_P118791 0.0000914 0.0225 0.000000631 0.000262 

Downregulated genes 

ABCC13 A_23_P397480 0.0366 0.0257 0.00593 0.000371 

C10orf82 A_23_P1286 0.000338 0.0291 0.00000487 0.000497 

C1orf186 A_23_P95640 0.00000435 0.0294 0.00000000584  0.000505 

CACNG6 A_23_P501933 0.000000956 0.045 0.000000000802  0.00131 

CCDC85A A_23_P349566 0.0115 0.0111 0.00113 0.0000453 

CCR3 A_23_P250302 0.000000207 0.0108 0.000000000111  0.000041 

CCR3 A_24_P367473 0.0000879 0.0465 0.000000575 0.00142 

CD24 A_23_P85250 0.0102 0.0244 0.000929 0.000312 

CLC A_23_P101683 0.0000306 0.0376 0.000000119 0.00085 

CPA3 A_23_P18017 0.0000000888  0.0195 0.0000000000387  0.000197 

ENPP3 A_23_P404536 0.00000018 0.0181 0.0000000000906  0.000179 

EPB42 A_23_P140675 0.0319 0.0195 0.00483 0.000196 

FCER1A A_23_P103765 0.000395 0.0382 0.0000062 0.000883 

FCRLA A_24_P276576 0.00319 0.0402 0.00017 0.00102 

GPR37 A_23_P145995 0.0336 0.0167 0.00522 0.000142 



80 Lijun Liu et al.:  Bioinformatics Analysis Identifies Potential Key Genes of Peripheral Blood Mononuclear  

Cell in Idiopathic Pulmonary Fibrosis 

Gene Symbol ID 
adj. P. Val P. Value 

male female male female 

HBA1 A_23_P37856 0.000805 0.00511 0.0000208 0.00000772 

HBA2 A_24_P142305 0.000431 0.0037 0.00000734 0.00000348 

HBA2 A_23_P26457 0.000599 0.0039 0.0000127 0.00000458 

HBD A_24_P75190 0.000588 0.00976 0.0000123 0.0000265 

HBQ1 A_23_P49254 0.00166 0.000147 0.0000637 0.0000000197  

HDC A_23_P117662 0.0000212 0.0173 0.0000000718  0.000154 

HRH4 A_23_P386310 0.000244 0.0122 0.00000301 0.0000592 

IL4 A_23_P213706 0.000000062 0.014 0.0000000000208  0.0000965 

ITGB8 A_24_P759477 0.00000686 0.00752 0.000000012 0.0000146 

LTK A_23_P14853 0.000151 0.0249 0.00000138 0.000334 

MME A_24_P260101 0.00147 0.0122 0.000054 0.0000581 

MME A_23_P212061 0.00345 0.00622 0.000191 0.0000102 

MPPED2 A_23_P52888 0.000459 0.0252 0.00000803 0.000342 

MS4A2 A_23_P1904 0.00000277 0.0143 0.00000000316  0.000106 

PAGE2 A_32_P70927 0.0227 0.0151 0.00299 0.000118 

PAGE2B A_32_P109683 0.0301 0.0211 0.00445 0.000226 

PAGE5 A_23_P22744 0.0288 0.0139 0.00419 0.0000912 

RAB3IP A_32_P180920 0.0000206 0.0254 0.0000000656  0.00035 

RBM20 A_24_P453497 0.00119 0.0453 0.0000387 0.00134 

RNF182 A_23_P399255 0.00802 0.0433 0.000659 0.00119 

SLC45A3 A_24_P208345 0.0000106 0.0247 0.0000000227  0.000321 

SLC4A10 A_24_P930111 0.0000133 0.0373 0.0000000311  0.000822 

SLC4A10 A_24_P314786 0.0000429 0.0481 0.000000186 0.00158 

THSD7A A_24_P400324 0.0000000888  0.0037 0.0000000000381  0.00000347 

TRIM49 A_23_P1575 0.000000918 0.0184 0.000000000719  0.000182 

TRIM51 A_23_P150483 0.0000000042  0.00984 0.000000000000282  0.0000282 

TRIM53AP A_24_P16353 0.00000825 0.00131 0.000000015 0.000000396 

TRIM64 A_23_P12972 0.000508 0.0271 0.00000939 0.000425 

TRPM6 A_23_P216712 0.00000528 0.0138 0.00000000779  0.0000885 

UGT2B11 A_23_P212968 0.00777 0.0367 0.000628 0.000802 

UGT2B7 A_23_P136671 0.000353 0.000000111  0.00000525 0.00000000000373  

VWCE A_23_P52986 0.0252 0.00742 0.00346 0.0000142 

ZNF91 A_23_P209146 0.0000181 0.0108 0.0000000522  0.000042 

Table 2. Continued. 

Gene Symbol ID 
log FC 

Gene. title 
male female 

Upregulated genes 
   

AP1S1 A_23_P157404 1.1140727 1.2453211 adaptor related protein complex 1 sigma 1 subunit 

AP1S1 A_24_P63950 1.0989288 1.2347777 adaptor related protein complex 1 sigma 1 subunit 

AP5B1 A_24_P9883 1.6985578 1.5936472 adaptor related protein complex 5 beta 1 subunit 

APOL6 A_24_P941167 1.5528797 1.6845138 apolipoprotein L6 

COQ10B A_32_P1192 1.1098125 1.4745875 coenzyme Q10B 

DUSP1 A_23_P110712 2.2050261 1.7767065 dual specificity phosphatase 1 

EMP1 A_24_P921446 1.293242 1.2217363 epithelial membrane protein 1 

FAM20A A_32_P108254 1.9548785 1.5243216 family with sequence similarity 20 member A 

FAM20A A_24_P352952 2.0801823 1.6580721 family with sequence similarity 20 member A 

FCAR A_24_P348265 1.5712738 1.1219079 Fc fragment of IgA receptor 

FOS A_23_P106194 2.8185477 2.8510469 Fos proto-oncogene, AP-1 transcription factor subunit 

GSTT2 A_23_P109427 1.076046 1.2621832 glutathione S-transferase theta 2 (gene/pseudogene) 

JUN A_23_P201538 2.3210056 2.2608329 Jun proto-oncogene, AP-1 transcription factor subunit 

JUNB A_24_P241815 1.4505145 1.4068335 JunB proto-oncogene, AP-1 transcription factor subunit 

LMNB1 A_23_P258493 1.2516538 1.6254543 lamin B1 

MBD2 A_24_P119201 1.6597378 1.6667309 methyl-CpG binding domain protein 2 

PDAP1 A_23_P151198 1.1131674 1.3884275 PDGFA associated protein 1 

PDK4 A_23_P257087 1.0898457 1.6686671 pyruvate dehydrogenase kinase 4 

PDK4 A_24_P243749 1.0776004 1.6681819 pyruvate dehydrogenase kinase 4 

PEAK1 A_24_P933801 1.1617162 1.2234933 pseudopodium enriched atypical kinase 1 

PER1 A_24_P93916 2.5128018 1.6856721 period circadian clock 1 

RHOB A_23_P51136 1.8707196 1.4680517 ras homolog family member B 

SERPINB2 A_23_P153185 1.075777 1.0828608 serpin family B member 2 
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Gene Symbol ID 
log FC 

Gene. title 
male female 

SLED1 A_24_P927716 2.2508577 2.0327458 proteoglycan 3 pseudogene 

SOCS3 A_23_P207058 2.1650652 1.7844297 suppressor of cytokine signaling 3 

SOCS3 A_23_P351069 1.9930166 1.7282561 suppressor of cytokine signaling 3 

SOD2 A_24_P935819 2.1525682 2.2469801 superoxide dismutase 2, mitochondrial 

SRGN A_24_P915269 2.1742154 2.6417286 serglycin 

STAC3 A_23_P10947 1.1117068 1.0203305 SH3 and cysteine rich domain 3 

STAT3 A_24_P923962 1.0796424 1.2121782 signal transducer and activator of transcription 3 

TEX14 A_32_P126079 1.2880819 1.7212135 testis expressed 14, intercellular bridge forming factor 

TMEM107 A_23_P118791 1.4412015 1.4721218 transmembrane protein 107 

Downregulated genes 
   

ABCC13 A_23_P397480 -1.951228 -2.946519 ATP binding cassette subfamily C member 13 (pseudogene) 

C10orf82 A_23_P1286 -1.867092 -1.680199 chromosome 10 open reading frame 82 

C1orf186 A_23_P95640 -1.620385 -1.214304 chromosome 1 open reading frame 186 

CACNG6 A_23_P501933 -2.489393 -2.006053 calcium voltage-gated channel auxiliary subunit gamma 6 

CCDC85A A_23_P349566 -1.066576 -1.840001 coiled-coil domain containing 85A 

CCR3 A_23_P250302 -2.382942 -2.10451 C-C motif chemokine receptor 3 

CCR3 A_24_P367473 -1.410334 -1.052858 C-C motif chemokine receptor 3 

CD24 A_23_P85250 -1.011483 -1.195061 CD24 molecule 

CLC A_23_P101683 -2.57649 -2.635986 Charcot-Leyden crystal galectin 

CPA3 A_23_P18017 -2.455389 -1.959501 carboxypeptidase A3 

ENPP3 A_23_P404536 -1.88905 -1.296145 ectonucleotide pyrophosphatase/phosphodiesterase 3 

EPB42 A_23_P140675 -1.985546 -3.31249 erythrocyte membrane protein band 4.2 

FCER1A A_23_P103765 -1.316214 -1.139695 Fc fragment of IgE receptor Ia 

FCRLA A_24_P276576 -1.056556 -1.299941 Fc receptor like A 

GPR37 A_23_P145995 -1.190649 -1.960249 G protein-coupled receptor 37 

HBA1 A_23_P37856 -2.165281 -2.768918 hemoglobin subunit alpha 1 

HBA2 A_24_P142305 -2.755512 -3.783318 hemoglobin subunit alpha 2 

HBA2 A_23_P26457 -2.317402 -2.940702 hemoglobin subunit alpha 2 

HBD A_24_P75190 -2.138927 -2.707546 hemoglobin subunit delta 

HBQ1 A_23_P49254 -2.358415 -3.671391 hemoglobin subunit theta 1 

HDC A_23_P117662 -2.252604 -2.297751 histidine decarboxylase 

HRH4 A_23_P386310 -1.84512 -2.35102 histamine receptor H4 

IL4 A_23_P213706 -2.436502 -2.315922 interleukin 4 

ITGB8 A_24_P759477 -2.315214 -1.795095 integrin subunit beta 8 

LTK A_23_P14853 -1.084265 -1.088327 leukocyte receptor tyrosine kinase 

MME A_24_P260101 -1.706598 -2.295779 membrane metallo-endopeptidase 

MME A_23_P212061 -1.405164 -2.026871 membrane metallo-endopeptidase 

MPPED2 A_23_P52888 -1.656583 -1.338681 metallophosphoesterase domain containing 2 

MS4A2 A_23_P1904 -2.626586 -2.433001 membrane spanning 4-domains A2 

PAGE2 A_32_P70927 -1.139398 -1.566661 PAGE family member 2 

PAGE2B A_32_P109683 -1.185484 -1.926982 PAGE family member 2B 

PAGE5 A_23_P22744 -1.058192 -1.493009 PAGE family member 5 

RAB3IP A_32_P180920 -1.021236 -1.452316 RAB3A interacting protein 

RBM20 A_24_P453497 -1.116389 -1.165439 RNA binding motif protein 20 

RNF182 A_23_P399255 -2.692754 -2.238002 ring finger protein 182 

SLC45A3 A_24_P208345 -1.514775 -1.182414 solute carrier family 45 member 3 

SLC4A10 A_24_P930111 -2.103964 -2.200479 solute carrier family 4 member 10 

SLC4A10 A_24_P314786 -1.750496 -1.796706 solute carrier family 4 member 10 

THSD7A A_24_P400324 -1.690056 -1.149354 thrombospondin type 1 domain containing 7A 

TRIM49 A_23_P1575 -2.460168 -2.278707 tripartite motif containing 49 

TRIM51 A_23_P150483 -2.767962 -2.201392 tripartite motif-containing 51 

TRIM53AP A_24_P16353 -2.039508 -2.085168 tripartite motif containing 53A, pseudogene 

TRIM64 A_23_P12972 -2.396233 -2.756967 tripartite motif containing 64 

TRPM6 A_23_P216712 -2.766311 -2.765324 transient receptor potential cation channel subfamily M member 6 

UGT2B11 A_23_P212968 -1.109849 -1.055996 UDP glucuronosyltransferase family 2 member B11 

UGT2B7 A_23_P136671 -1.281892 -2.223901 UDP glucuronosyltransferase family 2 member B7 

VWCE A_23_P52986 -1.113653 -1.94727 von Willebrand factor C and EGF domains 

ZNF91 A_23_P209146 -1.06124 -1.009823 zinc finger protein 91 
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Figure 1. A heatmap of 72 differentially expressed genes between IPF patients and healthy controls. (A) Male IPF patients and male healthy controls. (B) Female 

IPF patients and female healthy controls. Red represents upregulated genes, and blue represents downregulated genes. (C) Venn diagram of differentially 

expressed genes between IPF patients and healthy controls. Up represents upregulated genes, and down represents downregulated genes. 

3.2. Go and Pathway Enrichment Analysis of DEGs 

To analyze the functions and mechanisms of DEGs, the 

functional and pathway enrichment analyses of upregulated 

and downregulated DEGs were performed using the DAVID 

6.8 online tool. In our study, a total of 51 GO terms and 8 

pathways of DEGs (P-value <0.05), including 27 BPs, 12 CCs, 

and 12 MFs, were obtained, and the top five of each item are 

shown in Table 3. GO analysis results showed that changes in 

BPs of upregulated DEGs were significantly enriched in 

response to cAMP, positive regulation of cell differentiation, 

cellular response to calcium ion, response to drug, and 

regulation of cell cycle. Downregulated DEGs in BPs were 

significantly enriched in oxygen transport, bicarbonate 

transport, positive regulation of mast cell degranulation, 

angiotensin maturation, and positive regulation of cytosolic 

calcium ion concentration. Changes in CCs of upregulated 

DEGs were mainly enriched in nuclear chromatin, lamin 

filament, ciliary transition zone, transcription factor complex, 

and nuclear inner membrane. Downregulated DEGs in CCs 

were mainly enriched in hemoglobin complex, 

haptoglobin-hemoglobin complex, integral component of 

plasma membrane, endocytic vesicle lumen, and blood 

microparticle. Changes in MFs of upregulated DEGs were 

mainly enriched in RNA polymerase II core promoter 

proximal region sequence-specific DNA binding, transcription 

factor activity, RNA polymerase II core promoter proximal 

region sequence-specific binding, transcriptional activator 

activity, RNA polymerase II core promoter proximal region 

sequence-specific binding, and transcription factor binding. 

Changes in MFs of downregulated DEGs were mainly 

enriched in oxygen transporter activity, oxygen binding, heme 

binding, iron ion binding, and haptoglobin binding (Table 3). 

The pathways enriched by upregulated DEGs were mainly 

related to the TNF signaling pathway, Osteoclast 

differentiation, Herpes simplex infection, Prolactin signaling 
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pathway, and Hepatitis B. The pathways enriched by 

downregulated DEGs were mainly related to Asthma, Fc 

epsilon RI signaling pathway, and Hematopoietic cell lineage 

(Table 3). 

Table 3. The top five GO and pathway enrichment analysis of DEGs. 

Category Term Description Count P. Value 

Upregulated genes     

GOTERM_BP GO:0051591 response to cAMP 3 0.0000928  

GOTERM_BP GO:0045597 positive regulation of cell differentiation 3 0.0003071  

GOTERM_BP GO:0071277 cellular response to calcium ion 3 0.0010256  

GOTERM_BP GO:0042493 response to drug 3 0.0055356  

GOTERM_BP GO:0051726 regulation of cell cycle 3 0.0055356  

GOTERM_CC GO:0000790 nuclear chromatin 4 0.0023008  

GOTERM_CC GO:0005638 lamin filament 2 0.0086248  

GOTERM_CC GO:0035869 ciliary transition zone 2 0.0273487  

GOTERM_CC GO:0005667 transcription factor complex 3 0.0309618  

GOTERM_CC GO:0005637 nuclear inner membrane 2 0.0374182  

GOTERM_MF GO:0000978 
RNA polymerase II core promoter proximal region sequence-specific DNA 

binding 
6 0.0001178  

GOTERM_MF GO:0000982 
transcription factor activity, RNA polymerase II core promoter proximal region 

sequence-specific binding 
2 0.0293031  

GOTERM_MF GO:0001077 
transcriptional activator activity, RNA polymerase II core promoter proximal 

region sequence-specific binding 
3 0.0412042  

GOTERM_MF GO:0008134 transcription factor binding 2 0.0483833  

KEGG_PATHWAY ptr04668 TNF signaling pathway 4 0.0003942  

KEGG_PATHWAY ptr04380 Osteoclast differentiation 4 0.0007797  

KEGG_PATHWAY ptr05168 Herpes simplex infection 4 0.0022599  

KEGG_PATHWAY ptr04917 Prolactin signaling pathway 3 0.0042762  

KEGG_PATHWAY ptr05161 Hepatitis B 3 0.0186064  

Downregulated genes     

GOTERM_BP GO:0015671 oxygen transport 4 0.0000031  

GOTERM_BP GO:0015701 bicarbonate transport 3 0.0033648  

GOTERM_BP GO:0043306 positive regulation of mast cell degranulation 2 0.0214126  

GOTERM_BP GO:0002003 angiotensin maturation 2 0.0214126  

GOTERM_BP GO:0007204 positive regulation of cytosolic calcium ion concentration 3 0.0284004  

GOTERM_CC GO:0005833 hemoglobin complex 4 0.0000015  

GOTERM_CC GO:0031838 haptoglobin-hemoglobin complex 2 0.0078789  

GOTERM_CC GO:0005887 integral component of plasma membrane 8 0.0190709  

GOTERM_CC GO:0071682 endocytic vesicle lumen 2 0.0311553  

GOTERM_CC GO:0072562 blood microparticle 3 0.0361847  

GOTERM_MF GO:0005344 oxygen transporter activity 4 0.0000032  

GOTERM_MF GO:0019825 oxygen binding 4 0.0001354  

GOTERM_MF GO:0020037 heme binding 4 0.0030695  

GOTERM_MF GO:0005506 iron ion binding 4 0.0041867  

GOTERM_MF GO:0031720 haptoglobin binding 2 0.0063845  

KEGG_PATHWAY hsa05310 Asthma 3 0.0026938  

KEGG_PATHWAY hsa04664 Fc epsilon RI signaling pathway 3 0.0133022  

KEGG_PATHWAY hsa04640 Hematopoietic cell lineage 3 0.0212146  

If there were more than five terms enriched in this category, the top five terms were selected according to P-value. 

3.3. PPI Network Construction and Hub Gene Identification 

Protein interactions among the DEGs were predicted with 

STRING online database. A PPI network with 69 nodes and 68 

edges was obtained and the PPI network was visualized by 

Cytoscape (Figure 2B). The cytoHubba plugin was then used 

to analyze hub genes with MCC, and genes with the top 10 

scores were identified as hub genes (Figure 2C). As shown in 

Figure 2C, six upregulated genes (JUN, FOS, STAT3, SOCS3, 

JUNB, DUSP1) and four downregulated genes (IL4, FCER1A, 

MS4A2, CPA3) were identified. The gene symbols, full names, 

and scores of hub genes are shown in Table 4. 
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Figure 2. PPI network construction and bub gene identification. (A) PPI network for DEGs. (B) Cytoscape network visualization of the 69 nodes and 68 edges 

that were obtained with interaction scores >0.4 according to the STRING online database. The nodes represent genes, and the edges represent links between 

genes. Red represents upregulated genes, and green represents downregulated genes. (C) The hub genes with the top 10 scores. 

Table 4. The top 10 hub genes with highest scores. 

Gene symbol Full name Score 

JUN Jun proto-oncogene, AP-1 transcription factor subunit 267 

FOS Fos proto-oncogene, AP-1 transcription factor subunit 266 

STAT3 signal transducer and activator of transcription 3 244 

SOCS3 suppressor of cytokine signaling 3 241 

JUNB JunB proto-oncogene, AP-1 transcription factor subunit 240 

IL4 interleukin 4 148 

DUSP1 dual specificity phosphatase 1 120 

FCER1A Fc fragment of IgE receptor Ia 37 

MS4A2 membrane spanning 4-domains A2 30 

CPA3 carboxypeptidase A3 14 

 

3.4. Go and Pathway Enrichment Analysis of Hub Genes 

We performed a functional enrichment analysis for hub 

genes. The GO analysis demonstrated that changes in BPs 

were mainly enriched in cellular response to calcium ion, 

regulation of cell cycle, positive regulation of mast cell 

degranulation, response to muscle stretch, B cell activation, 

positive regulation of pri-miRNA transcription from RNA 

polymerase II promoter, positive regulation of cell 

differentiation, SMAD protein signal transduction, 

transforming growth factor beta receptor signaling pathway, 

and response to drug. Changes in CCs were significantly 

enriched in external side of plasma membrane and 

nucleoplasm. Changes in MFs for the hub genes were enriched 

mainly in transcriptional activator activity, RNA polymerase II 

core promoter proximal region sequence-specific binding, and 

RNA polymerase II core promoter proximal region 

sequence-specific DNA binding. 

The pathways enriched by hub genes were mainly related to 

Asthma, Fc epsilon RI signaling pathway, Inflammatory bowel 

disease (IBD), Leishmaniasis, T cell receptor signaling 

pathway, TNF signaling pathway, Osteoclast differentiation, 

Jak-STAT signaling pathway, Prolactin signaling pathway, 

Measles, Hepatitis B, Herpes simplex infection, and MAPK 

signaling pathway (Table 5). 
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Table 5. GO and pathway enrichment analysis of hub genes. 

Category Term Description Count P. Value 

GOTERM_BP GO:0071277 cellular response to calcium ion 3 0.00022 

GOTERM_BP GO:0051726 regulation of cell cycle 3 0.0009196 

GOTERM_BP GO:004330 positive regulation of mast cell degranulation 2 0.0067371 

GOTERM_BP GO:0035994 response to muscle stretch 2 0.0075764 

GOTERM_BP GO:0042113 B cell activation 2 0.0092531 

GOTERM_BP GO:1902895 positive regulation of pri-miRNA transcription from RNA polymerase II promoter 2 0.0100905 

GOTERM_BP GO:0045597 positive regulation of cell differentiation 2 0.0109273 

GOTERM_BP GO:0060395 SMAD protein signal transduction 2 0.0267071 

GOTERM_BP GO:0007179 transforming growth factor beta receptor signaling pathway 2 0.0390064 

GOTERM_BP GO:0042493 response to drug 2 0.0430753 

GOTERM_CC GO:0009897 external side of plasma membrane 3 0.0043499 

GOTERM_CC GO:0005654 nucleoplasm 4 0.0406351 

GOTERM_MF GO:0001077 
transcriptional activator activity, RNA polymerase II core promoter proximal region 

sequence-specific binding 
3 0.0033735 

GOTERM_MF GO:0000978 RNA polymerase II core promoter proximal region sequence-specific DNA binding 3 0.0066624 

KEGG_PATHWAY hsa05310 Asthma 4 0.0000139 

KEGG_PATHWAY hsa04664 Fc epsilon RI signaling pathway 4 0.0000653 

KEGG_PATHWAY hsa05321 Inflammatory bowel disease (IBD) 4 0.0001043 

KEGG_PATHWAY hsa05140 Leishmaniasis 4 0.0001407 

KEGG_PATHWAY hsa04660 T cell receptor signaling pathway 4 0.0002361 

KEGG_PATHWAY hsa04668 TNF signaling pathway 4 0.000313 

KEGG_PATHWAY hsa04380 Osteoclast differentiation 4 0.0004247 

KEGG_PATHWAY hsa04630 Jak-STAT signaling pathway 4 0.0010633 

KEGG_PATHWAY hsa04917 Prolactin signaling pathway 3 0.0048486 

KEGG_PATHWAY hsa05162 Measles 3 0.0124324 

KEGG_PATHWAY hsa05161 Hepatitis B 3 0.014251 

KEGG_PATHWAY hsa05168 Herpes simplex infection 3 0.0322808 

KEGG_PATHWAY hsa04010 MAPK signaling pathway 3 0.0400919 

 

3.5. Using Hub Genes for IPF Diagnosis 

The diagnostic accuracy of the top 10 hub genes was 

assessed using ROC curve analysis (Figure 3). The areas under 

the ROC curves were 0.9797, 0.9629, 0.9654, 0.9687, and 

0.9154 for JUN, FOS, JUNB, SOCS3, and STAT3, as shown in 

Figure 3A. The areas under the ROC curves were 0.9318, 

0.9501, 0.8805, 0.932, and 0.9365 for DUSP1, IL4, FCER1A, 

MS4A2, and CPA3, as shown in Figure 3B. 

 
Figure 3. Validation of the diagnostic value of the hub genes for IPF. (A-B) Receiver operating characteristic curve of the hub genes for diagnosis of IPF. 

4. Discussion 

In this study, we analyzed the DEGs in PBMCs from IPF 

patients and healthy controls. We performed independently for 

the male IPF and female IPF patients to pinpoint the potential 

gens. The results of the microarray analysis revealed the 

expression of 72 DEGs (28 upregulated genes and 44 

downregulated genes). The associations between these genes 

were revealed by constructing a PPI network. The top 10 genes 

with the highest scores were identified, including JUN, FOS, 

STAT3, SOCS3, JUNB, DUSP1, IL4, FCER1A, MS4A2, and 

CPA3. There were six upregulated genes (JUN, FOS, STAT3, 

SOCS3, JUNB, DUSP1) and four downregulated genes (IL4, 
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FCER1A, MS4A2, CPA3). In addition, we use GO and 

pathway enrichment analysis to perform their functions. At the 

same time, we used the ROC curve to analyze the AUC of the 

10 top hub genes. 

JUN, FOS, STAT3, SOCS3, JUNB, and DUSP1 are 

upregulated genes in PBMC of IPF. JUN and FOS are a 

subunit of the activator protein-1 (AP-1) [14]. AP-1 is a 

dimeric complex composed of the JUN (c-JUN, JUND, 

JUNB), FOS, ATF, and MAF protein families [14-16].
 
It can 

be seen that JUNB is a member of the JUN protein. Moreover, 

JUN and FOS are important members of the transcription 

AP-1 [17]. One study has reported that AP-1 induction may be 

associated with increased proliferation and extracellular 

matrix (ECM) production in IPF fibroblasts [18]. And 

Werning et al. have recently found that c-JUN and FOS are 

expressed in fibroblasts of IPF [19]. Besides, Chang et al. have 

shown that JUNB can regulate Epithelial-to-mesenchymal 

transition (EMT) [20]. One study has shown that EMT plays 

an important role in the pathogenesis of IPF [21]. Therefore, 

JUN, FOS, and JUNB may be involved in forming IPF. 

STAT3 is a ubiquitously expressed latent cytoplasmic 

protein that regulates lung fibrosis [22]. Waters et al. have 

shown that STAT3 can promote fibroblast senescence to 

promote fibrosis [23]. Milara et al. have found that lung from 

patients with IPF expressed higher levels of STAT3, as well as 

phosphorylated [24]. Recently, it has been demonstrated that 

STAT3 regulates lung fibroblast-myofibroblast activation and 

differentiation in IPF [25]. Given these findings, STAT3 can 

be used as a biomarker in IPF. 

SOCS3 is one of the most studied members of the SOCS 

family that consists of eight proteins (SOCS1-7 and 

cytokine-inducible SH2-containing protein, CISH) [26]. 

SOCS3 can be a major regulator of STAT3 activation [27]. 

One study has found that SOCS3 expression was shown to be 

elevated for up to 30 days in bleomycin-induced fibrosis [28]. 

A study by Akram et al. has shown that a significant increase 

in SOCS3 expression was observed in IPF AEC and 

macrophages compared to control lung tissue using dual 

immunohistochemical analysis [29]. Shocher et al. have found 

that primary human fibroblast culture from IPF (IPF-HLFs) 

expressed higher levels of SOCS3 when tested basal levels in 

HLFs [30]. Therefore, it may be hypothesized that SOCS3 

may play a significant role in IPF. 

DUSP1, also named mitogen-activated protein kinase 

(MAPK) phosphatase (MKP-1) that dephosphorylates and 

deactivate MAPKs, acts as a negative regulator of the MAPK 

signaling pathway [31, 32]. Redente et al. have shown that 

DUSP1-deficient mice reduced pulmonary fibrosis in 

bleomycin-induced fibrosis and pulmonary fibrosis was 

attenuated in mice given bleomycin using DUSP1 inhibitors 

[33]. Besides, one study has found that DUSP1 plays a critical 

role in promoting pulmonary fibrosis from macrophages to 

fibroblasts in vivo experiments [34]. These studies suggest 

that DUSP1 plays a crucial role in IPF and maybe a relevant 

therapeutic target. 

IL4, FCER1A, MS4A2, and CPA3 are downregulated genes 

in PBMC of IPF. IL-4 is a fibrogenic cytokine that increases 

collagen production by fibroblasts [35]. But one study has 

found that pulmonary fibrosis and lung injury and 

inflammation in the bleomycin-induced fibrosis model of 

IL-4-deficient mice were substantially less than wild-type 

mice [36]. These results suggest that IL-4 has both fibrogenic 

and anti-inflammatory in the context of bleomycin-induced 

lung fibrosis and injury. FCER1A gene encodes the а-subunit 

(FCER1а) of the high-affinity IgE receptor consisting of an 

а-chain (FCER1), an β-chain (MS4A2) and two γ-chains 

(FCER1G) [37-39]. FCER1 and AMS4A2 expressing in mast 

cells (MCs) are associated with asthma [37, 38, 40]. But CPA3 

is one of the MC-restricted proteases that are secreted by MCs 

[41]. It is also associated with asthma [41]. What’s more, it is 

demonstrated that FCER1A, MS4A2, and CPA3 may be 

favorable prognostic indicators in non-small cell lung cancer 

[42, 43]. However, there is no research on the relationship 

between FCER1A, MS4A2, and CPA3 and IPF so far. Based 

on our study, we can predict that FCER1A, MS4A2, and 

CPA3 may be PBMC markers in IPF. 

In our study, all the AUC values of the top 10 genes were in 

the range 0.880-0.980 concerning the ROC curve. These genes 

possess high accuracy except that FCER1A indicated 

moderate accuracy [44]. KEGG enrichment analysis of these 

genes showed that these genes were mainly linked to the Fc 

epsilon RI signaling pathway, TNF signaling pathway, 

Jak-STAT signaling pathway, and MAPK signaling pathway. 

These signaling pathways play an essential role in the 

pathogenesis of IPF. We speculated that these genes might 

play an important role in IPF. But our study has a few 

limitations. Firstly, to fully identify the key genes in PBMC of 

IPF, it is better to combine venous blood samples and lung 

tissue to explore. Second, the sample size of the dataset we 

explored was too small. Therefore, it is necessary to increase 

the samples to improve the diagnostic accuracy of these hub 

genes in IPF. Third, a single microarray analysis was used in 

our study. It may result in a high false-positive rate. Thus, it is 

necessary to improve the detection capability by combining 

multiple individual data in future studies. What’s more, some 

key genes and pathways were not found in IPF in previous 

studies. For this reason, we need more experimental evidence 

to prove the relationship between these key genes and IPF. 

5. Conclusion 

Our study used bioinformatics analysis to identify the 

associated biological functions and pathways involved in IPF 

to explore the pathogenesis, diagnosis, and prognosis of IPF. 

Moreover, we identified 10 key genes as potential diagnostic 

biomarkers through PPI network analysis and the ROC curve 

analysis. However, more experiments are needed to validate 

the results of our study further. 
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