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Abstract: One of the major challenges in bioinformatics is the development of efficient computational algorithms for 

biological sequence motif discovery. In the post-genomic era, the ability to predict the behavior, the function, or the structure of 

biological entities or motifs such as genes and proteins, as well as interactions among them, play a fundamental role in the 

discovery of information to help explain biological mechanisms. This necessitated the development of computational methods 

for identifying these entities. Consequently, a large number of motif finding algorithms have been implemented and applied to 

various organisms over the past decade. This paper presents a comparative analysis of the latest developments in motif finding 

algorithms and proposed an algorithm for motif discovery based on a combinatorial approach of pattern driven and statistical 

based approach. The proposed algorithm, Suffix Tree Gene Enrichment Motif Searching (STGEMS) as reported in [30], proved 

effective in identifying motifs from organisms with peculiarity in their genomic structure such as the AT-rich sequence of the 

malaria parasite, P. falciparum. The empirical time analysis of seven motif discovery algorithms was evaluated using four sets of 

genes from the intraerythrocytic development cycle of P. falciparum. The result shows that algorithms based on a combinatorial 

approach are more desirable. 
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1. Introduction 

In the post-genomic era, the ability to predict the behavior, 

the function, or the structure of biological entities (such as 

genes and proteins), as well as interactions among them, play a 

fundamental role in the discovery of information to help 

explain biological mechanisms. [39]. 

Several functional and structural properties and also 

evolutionary mechanisms, can be predicted either by the 

comparison of new elements with already classified elements, 

or by the comparison of elements with a similar structure or 

function and using it to infer the common mechanism that is at 

the basis of the observed similar behavior. Such elements are 

commonly called motifs [11]. 

Comparison-based methods for sequence analysis find their 

application in several biological contexts, such as extraction of 

transcription factors, DNA binding sites, identification of 

structural and functional similarities in proteins, and phylogeny 

reconstruction, Therefore, the development of adequate 

methodologies for genomic sequence analysis is of paramount 

interest in computational biology. In other words sequence 

analysis refers to the process of subjecting a DNA, RNA or 

protein sequence to any of a wide range of analytical methods to 

understand its features, function, structure or evolution. 

Sequence analysis algorithms are basically classified into three. 

The first classification is Gene Finding Algorithms. These 

algorithms are used to predict gene structure. Gene prediction 

or gene finding refers to the process of identifying the regions 

of genomic DNA that encode genes. This includes 

protein-coding genes as well as RNA genes, but may also 

include prediction of other functional elements such as 

regulatory regions. Gene finding is the first step in sequence 

analysis procedure. This is because the genes in the genome of 

any specie that had just been sequenced had to be annotated 

before any further processing can take place. The operating 

principle of gene finding algorithms is relatively simple; it is 

basically based on an inference system that can decode the 

twenty amino acids using the genetic code. Some popular gene 

finding tools are GENESCAN, GENEMAK, GENIE, 

HMMGENE, PHAT etc. [8, 43]. 

Sequence Alignment Algorithms is the second classification 

of sequence analysis algorithms. These are algorithms that align 

genomic sequences to detect similarity. Sequence Alignment is 

a way of arranging the sequences of DNA, RNA, or protein to 
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identify regions of similarity that may be a consequence of 

functional, structural, or evolutionary relationships between the 

sequences. Aligned sequences of nucleotide or amino acid 

residues are typically represented as rows within a matrix. Gaps 

are inserted between the residues so that identical or similar 

characters are aligned in successive columns. The building 

paradigm of Sequence Alignment algorithms is usually more 

complex than gene finding algorithms. Popular sequence 

alignment tools include BLAST, ClustalW, T-coffee, FASTA3x 

among others. [35, 43, 46]. 

The last classification of sequence analysis algorithms is 

Motif Discovery Algorithms. These are algorithms that 

predict patterns from the sequence data hypothesised to have 

biological functions such as gene regulation. This class of 

algorithm is the most complicated of the three categories of 

sequence analysis algorithms available. Primarily due to the 

complicated makeup of the motifs been sought and therefore 

require exquisite methodologies to effectively predict them. 

Some popular tools in this class include MEME, WEEDER 

and MUSA. 

 
Figure 1. Hierarchy of Sequence Analysis Algorithms. 

Motif discovery algorithms are based on the biological 

theory of high conservation which states that patterns repeated 

in a sequence data with high frequency is a potential motif or 

pattern of interest and needs to be mined effectively. [54]. The 

goal of motif discovery algorithms is to enumerate these 

patterns repeated with high frequency, since they have been 

established experimentally to have biological significance. 

The task is to eliminate those randomly occurring patterns, 

which could result in false positive prediction and report only 

the best motifs. 

The development of adequate methodologies for motif 

discovery is of unquestionable interest for several different 

fields in computational biology, therefore different researchers 

have adopted several approaches to extract these patterns such 

as pattern-driven approach, statistical based approach and 

machine learning based approach. All known motif discovery 

algorithms are, based on one or a combination of two or three 

of these approaches. Among the most popular methods are 

those based on the pattern driven approach methods, which 

uses several heuristics to extract candidate motifs and 

thereafter performs a validation check using statistical 

methods to extract candidate motifs with optimal features 

based on the statistical significance analysis. 

Motif discovery is an application area in the field of data 

mining in computer science. It is concerned with identifying 

and extracting relevant patterns hypothesized to have biological 

significance. Usually, a large data set is provided, then the data 

mining task involves the use of efficient techniques to mine the 

relevant patterns contained in the data set [40]. 

Pattern discovery in DNA sequences is one of the most 

challenging problems in molecular biology and computer 

science. In its simplest form, the problem can be formulated as 

follows: given a set of biological sequences, find an unknown 

pattern that occurs frequently. If a pattern of n letters long 

appears exactly in every sequence, a simple enumeration of all 

n-letter patterns that appear in the sequences gives the solution. 

However, when one works with DNA sequences, it is not that 

simple because patterns include mutations, insertions or 

deletions of nucleotides. 

Although there are experimental approaches for extracting 

regulatory motifs, such as DNA footprinting and Chromatin 

Immuno-Precipitation (chIP) methods; these approaches, 

however, are time consuming and very laborious. These 

weaknesses justify the need for computational methods to 

complement the experimental methods [41, 46]. 

2. Materials and Methods 

Various researchers have adopted several approaches to 

extract motifs. The main approaches are pattern-driven 

approach, statistical based approach and machine learning 

based approach. We shall attempt a review of some common 

motif discovery tools by grouping them into these three 

approaches while differentiating the tools used for simple motif 

and structured motif extraction. The identification of structured 

motifs (several simple motifs separated by spaces) is more 

involving because of the variable length spaces that are present 

in its makeup; therefore, the algorithms for its extraction require 

special tuning to identify the relevant motifs. [1]. 

a) Pattern-driven Motif Discovery Algorithms 

Pattern-driven method enumerates all the patterns in order 

to determine those appearing with a high frequency in the 

input sequence. It also considers the number of possible 

substitutions and thereafter provides a ranking for the 

extracted patterns according to some statistical measure of 

significance. The drawback in this approach is that they can 

have many false predictions, since they are not good at 

discriminating the relevant extracted motifs from the 
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potentially numerous false hits. In addition, this method 

requires a large number of parameters to be specified. [3]. 

The common techniques used in Pattern-driven Motif 

Discovery include enumeration (listing items in an order), 

suffix tree, graph, hash table and link list. However, our 

review of pattern-driven motif discovery tools will be based 

on the tools that utilized suffix tree and enumeration 

techniques, which are more relevant to this study. 

The first simple motif discovery algorithm to use the suffix 

tree was developed by [45]. The suffix tree was used to 

represent the sequences, returning all the traversal from the 

root node to the leaf node as unique patterns. The use of the 

suffix tree for preprocessing and organizing the input data 

resulted in an accelerated search for motifs. This 

implementation addressed to a large extent the speed 

bottleneck inherent in pattern-driven based methods. This was 

followed by [2] who developed the VERBUMCULUS 

algorithm and applied it to protein sequences. In [13] a variant 

of the suffix tree called a mismatch tree is used to develop the 

MITRA algorithm, which detected complex motifs with 

mutations successfully. WEEDER algorithm by [36] also used 

the suffix tree and identified simple motifs allowing the 

flexibility of parameter specification by users [14, 3, 17, 25]. 

A linear time suffix tree construction was achieved in 

SLI-REST (Suffix Link on Internal nodes-Reverse 

Engineering Suffix Tree) by incorporating edges (suffix links) 

of different types into all the internal nodes of the suffix tree. 

To realize the input suffix tree and links, a word is generated 

through a bi-coloured directed graph on a subset of the suffix 

tree’s internal nodes defined on its edges [9] 

The first structured motif extraction algorithm that used the 

suffix tree was developed by [32]. They extended the simple 

motif extraction algorithm developed by [45] to extract 

structured motifs. Their algorithm, SMILE proposed two 

solutions for extracting structured motifs on the suffix tree. In 

the first solution, the structured motif template consists of two 

components with a gap range between them, the algorithm 

starts by building a generalized suffix tree for the input 

sequences and then extracts the first component. In order to 

extract the other component, a jump is made in the sequences 

from the end of the first component to the second within the 

gap range. In the second solution, the suffix tree is modified 

temporarily so as to extract the second component from the 

modified suffix tree directly. SMILE proved inefficient in 

terms of its time and space complexity, which were 

exponential in the number of gaps between the two 

components. 

In [6], attempt was made to reduce the time complexity 

during the extraction of the structured motifs by SMILE and 

developed a parallel algorithm, called PSMILE. PSMILE used 

the technique of partitioning the structured motif searching 

space; this achieved a time speedup, which is linear on the 

number of available processing units. A year later, the same 

authors developed the RISO algorithm, an improvement on 

the SMILE algorithm. [5, 6, 7] This improvement is twofold: 

the first, instead of constructing the whole suffix tree for the 

input sequence, built a suffix tree only up to a certain level, 

which was called the factor tree; this resulted in saving 

appreciable space. Secondly, a new data structure called 

box-link was introduced to store the information about how to 

jump within the DNA sequences from one simple motif 

component to the subsequent one in the structured motif. This 

accelerated the extraction process and avoided the exponential 

time and space consumption that prevailed in the case of 

SMILE. In RISO, after the generalized factor tree was built, 

the box-links were constructed by exhaustively enumerating 

all the possible structured motifs in the sequences and they 

were added to the leaves of the factor tree. Then the extraction 

process began, during which the factor tree was temporarily 

and partially modified in order to extract the subsequent 

simple motifs. RISO needed a lot of computation at this stage 

since the box-link construction, the structured motif 

occurrences were exhaustively enumerated and the threshold 

of the sequences was never used to prune the candidate 

structured motifs [21, 24, 28]. 

An improvement on the RISO algorithm was provided by 

[38] by developing the RISOTTO algorithm. RISOTTO 

incorporated boxlinks data structure with the suffix tree. 

While traversing the tree, RISOTTO adopted a depth-first visit 

of the motif tree and does not attempt to extend the node if the 

maximal length was determined or the quorum was no longer 

satisfied. The main improvement of RISOTTO on RISO was 

its ability to store information concerning maximal 

extensibility of factors. This was done in order to avoid 

extending motifs that are unlikely candidates. RISOTTO was 

shown to outperform RISO in terms of computational speed. 

However, it incurred an extra cost due to the space required to 

store the extensibility information. 

Another popular structured motif extraction algorithm, 

EXMOTIF by [54] used a variant of the suffix tree, consisting 

of inverted index of symbol positions. This was used to 

enumerate all structured motifs by positional joins over the 

index. EXMOTIF was reported to outperform RISO in both 

approximate and exact matching and superior to RISSOTO in 

showing the actual occurrences of the structured motifs 

instead of the relative frequency of the occurrence as obtained 

using RISOTTO. [17, 37] 

Apart from simple and structured motif, suffix tree has been 

employed to extract motifs from large ranked list of sequences 

by [26, 27]. They used the same approach called DRIMust, 

[27] is a web server that support the search of imbalanced 

motif while [26] allows searching of variable gap motifs and 

long motifs over large alphabets. They return motifs that are 

over-represented at the top of the list with their corresponding 

P-values, which serve as Position Specific Scoring Matrix 

(PSSM) and the threshold used for the top is data driven 

through enrichment analysis (minimum hyper-geometric 

analysis). They are both efficient in searching for long motifs 

even in large data set that are not fixed sequences, with short 

running time. 

b) Statistical Based Motif Discovery Tools 

Statistical based method uses a two-phase iterative 

procedure where in the first step the likeliest occurrences of 

the motif are identified, and the second step adjusts the model 
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for the motif, which is usually represented by a position 

scoring weight matrix (PSWM) model based on the 

occurrences of the motifs determined in the previous step. In 

the first iteration the parameters of the initial model are 

usually set randomly. The limitation in this method is 

sensitivity to noise in the data and the fact that they are not 

guaranteed to converge to a global maximum since they 

employ some form of local search, such as Gibbs sampling, 

expectation maximization (EM) or greedy algorithms that 

may converge to a locally optimal solution [12,46,40,47]. 

Some common techniques used by statistical based method 

include expectation maximization, profiling using position 

specific scoring matrix and gene enrichment analysis. 

MEME (Expectation Maximization Motif Elicitation) by [4] 

and PHYME [36] used expectation maximization and position 

scoring matrix. While DRIM, by [13] and GEMS by [52] used 

gene enrichment analysis. EXTREME is an extension of 

MEME algorithm, which used an online EM to discover novel 

and infrequent motifs in large dataset like ChIP-Seq and 

DNase-Seq data [42]. Also, stochastic EM approach with an 

improved approximation to the likelihood function instead of 

normal deterministic EM was used in [23] to make the 

algorithm escape the local maxima and converge to models 

with higher energies. 

In [52], the GEMS algorithm used the gene enrichment 

technique and incorporates the statistical test of 

hypergeometric mean instead of the geometric mean used by 

[13]. GEMS also introduced the position weight matrix 

optimization principle, which improved the accuracy of the 

motifs discovered. GEMS algorithm is not an ab-initio motif 

discovery tool, it requires an already existing cluster as 

candidate motif to perform gene enrichment analysis on. 

Finding DNA motifs with adjacent and non-adjacent 

positional dependencies was established in [51]. triPWDM 

model was used to capture interdependencies within 3 

neighboring nucleotides while diSPWDM model was used to 

dynamically capture pairing dependencies at any two 

positions in the motif. Gibbs sampling approach was 

employed to update the model parameter and dependencies 

structure. 

c) Machine Learning Based Motif Discovery Tools 

Several motif discovery algorithms used different machine 

learning techniques as their operating principle. The most 

common machine learning technique used in motif inference 

tool is the genetic algorithm. The advantage of such genetic 

algorithm based methods is that they are likely to locate the 

global optimum in a typically difficult search space. On the 

other hand, they are stochastic and so they may fail to report 

consistent results in different runs. 

A few popular motif discovery tools based on genetic 

algorithm are FMGA (Finding Motif with Genetic Algorithm) 

by [29], GAME (Genetic Algorithm Motif Elicitation) by [50], 

MOGOMOD (Multi-Objective Genetic Algorithm Motif 

Discovery) by [20], GARPS (Genetic Algorithm with 

Random Projection Strategy) by [18] and [15] 

MOGAMOD used the multi-objective genetic algorithm to 

discover optimal motifs in sequential data. Multi-objective 

optimization involves having a solution which is a family of 

pareto-optimal set or non-dominated solutions. The optimal 

motif discovery problem was converted into three conflicting 

optimization problems of maximizing similarity, increasing 

motif length and support for candidate motifs. The 

implementation of MOGAMOD was based on a well known 

high performance multi-objective Genetic Algorithm called 

NSGA II(Non- dominated Sorting Genetic Algorithm) by [10, 

16, 49]. 

The sensitivity of MOGAMOD is further enhanced by its 

flexibility in choice of similarity measures for finding motifs. 

The user can analyze the obtained optimal motifs, and makes 

decision on the tradeoff between the different objectives. A 

detailed comparison of this similarity measure and that used 

by other popular motif discovery algorithms was reported in 

[31]. 

In [15], an iterative approach was employed to increase the 

computational efficiency of motif searching by using parallel 

random search. A new operation was added to the 3 operations 

of GA to achieve the algorithm. The computational efficiency 

was increase in GARPS by reducing the search space through 

RPS (Random Projection Strategy). RPS was to find good 

starting positions in the input sequences so as to infer possible 

candidate motifs and the candidate motifs are set as the 

population of the GA to iteratively refine and identify the best 

motifs. So GARPS is a combination of 2 approaches for motif 

discovery. 

d) Motif Discovery Tools Based On Combinatorial 

Approach 

A number of motif discovery algorithms combine two or 

more approaches to get a hybrid approach, which inherits 

desired features of the various approaches. This concept was 

reported by [34] in their study on survey of motif discovery 

tools. 

A popular motif discovery tool in this category is MUSA 

(Motif finder with UnSupervised Approach) based on a 

combination of machine learning and statistical technique [34]. 

MUSA used a bi-clustering algorithm that operates on a 

matrix of co-occurrences of simple motifs and computed the 

statistical significance using position weight matrix. MUSA 

successfully identified complex biologically significant motifs 

with a performance that was independent of the composite 

structure of the motifs being sought. MUSA could be used as a 

standalone tool or as a tool to determine the parameters 

required to run other motif discovery tools already available 

because of its effective statistical significance assessment 

method. MUSA was validated both with synthetic
 
and real 

data from yeast, and it was able to discover new biologically 

significant
 
motifs that had eluded searches performed using 

other motif finders such as MEME and AlignAce. [33]. 

BioProspector by [29] also combined Gibbs sampling 

statistical technique with a machine learning markov model. 

While APMotif by [48] used Affinity propagation (AP) 

clustering to find candidate motifs, and used EM to search for 

optimal motifs from the candidate motifs. 

A common choice among researchers of motif discovery 

tools is a combination of pattern-driven and statistical-based 
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methods since this approach guarantees that the sensitivity of 

the statistical based method be complemented with the speed 

efficiency of pattern-driven techniques. An example of this is 

the STEME (Suffix Tree and Expectation Maximization for 

Motif Elicitation) algorithm by [44]. 

This notion also influenced the design methodology of 

STGEMS algorithm by [30]. It combined the suffix tree, a 

pattern-driven approach with Gene Enrichment Motif 

Searching, a statistical approach. The incorporation of the 

suffix tree improved the speed limitation of the statistical 

based method. 

A list of the motif discovery tools reviewed in this study can 

be found in the appendix section. 

3. Result 

Our result shows a comparative analysis of some popular 

motif discovery algorithms in terms of their empirical runtime. 

The algorithms used are MEME and GEMS (statistical 

based motif discovery tools), WEEDER, RISOTTO and 

EXMOTIF (pattern driven motif discovery tool), 

MOGAMOD (a machine learning based motif discovery tool) 

and STGEMS (algorithm based on a combinatorial 

methodology). 

The experiment was conducted using sets of genes from the 

intraerythrocytic development cycle of P. falciparum downloaded 

from PlasmoDB (An online database of P.falciparum genes 

maintained by National Center for Biotechnology Information 

(NCBI) http://www.ncbi.nlm.nih.gov ). 

Four different sizes of genes were used in the analysis i.e. 

20,000, 40,000, 60,000 and 80,000bp, this variation in gene 

sizes was chosen to enable a classification of the performance 

of the algorithms as a function of input size. 

The empirical run time evaluation of the seven motif 

discovery tools are shown in figure 2. 

 

Figure 2. Empirical Runtime Comparison of some popular Motif Discovery Algorithms. 

The empirical runtime of the different algorithms was 

obtained by including a time stamp in the algorithm so that its 

output displays the execution time. From figure 2 above, it is 

clear that the empirical run time of all the algorithms tested 

increased as the size of input increased. The run time of the 

MEME algorithm, which is a statistical based motif discovery 

tool, was higher than all other algorithms that is MEME had 

the lowest performance among all the other tools compared 

since its running time over the set of the selected input was the 

highest. This is followed by GEMS, which is also based on a 

statistical method. MOGAMOD, a machine learning tool has 

an average run time performance. The pattern-driven methods 

WEEDER, RISOTTO and EXMOTIF are much faster than the 

statistical based tools; this speed performance gain is 

attributed to the fact that they all used the suffix tree data 

structure, which is known to enhance searching speed. 

EXMOTIF performed better than RISOTTO and WEEDER 

because it incorporated the use of suffix links in its 

implementation of the suffix tree data structure. STGEMS 

outperformed all the six algorithms. This is because the 

framework of STGEMS was built on an implementation of the 

suffix tree using linked list and hash table data structures 

unlike EXMOTIF, RISOTTO and WEEDER algorithms that 

did not incorporate these combined features. 

4. Conclusion 

Motif discovery is the process of identifying and extracting 

patterns believed to have biological importance and therefore 

necessary for understanding the complex biological 

mechanisms of living organisms. The variety of techniques 

adopted in the design paradigm of the various motif inference 

tools shows an increasing effort of researchers to develop 

efficient algorithms for genomic functions predictions. The 

efficiency of these algorithms is measured in terms of their 

time complexities, which in turn is affected by the choice of 

data structures used in the design paradigm. 

From this large number of available tools for motif finding, 
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users would like to have guidance in choosing the best tool. 

However, the assessment of the performance of the tools in 

identifying biologically motivated patterns is still a difficult 

task. This is mainly because we do not have a clear 

understanding of the biology of regulatory mechanisms; 

therefore, we lack an absolute standard against which to 

measure correctness of tools. Nevertheless, most of the 

algorithms compare the motifs identified using in-silico 

methods with those extracted using wet-lab methods. A high 

correlation between these two outputs gives a good 

performance measure to some extent. 

We agree with Tompa [49], that biologists should use a few 

complementary tools in combination rather than relying on a 

single one and pursue the top few predicted motifs of each 

rather than the single most significant motif. In the same vein, 

STGEMS which is based on a combinatorial approach of 

Pattern-driven and statistical method had a remarkable 

performance. This combinatorial approach guaranteed the 

incorporation of the speed efficiency of pattern-driven method 

with the improved predictive ability of the statistical based 

methods. 

Appendix 

Table 1. List of Motif Discovery Algorithms. 

S/N Algorithm Category Operating Principle Strengths Weakness Reference 

1. By Hert et al SBA Greedy Algorithm Simple to implement It is not time efficient Hertz and Stormo(1990) 

2. MEME SBA 
Expectation 

maximization 

Prior knowledge of the sequence is 

not required 

It cannot run large data set 

at once 
Bailey and Elkan (1995) 

3. AlignACE SBA Gibbs Sampling 
Displays frequency of non site 

sequence at a glance 
Not time efficient Roth Tet al, (1998) 

4. CONSENSUS SBA Weight Matrix Detects evolutionary relationship 
Building the evolution tree 

takes time 
Hertz and Stormo(1999) 

5. PhyME SBA EM 
Shows evolutionary relationship at 

a glance 

Extra time to construct the 

evolution tree 
Sinha et al., (2004) 

6. Oligo-Analysis PDA Enumeration Easy to implement 
It cannot handle motifs 

with mutation 
Van Helden et al. (1998). 

7. WEEDER PDA Suffix Tree 
Allow flexible parameter 

specification 

It can only return simple 

motif 
Pavesi(2001) 

8. By Sagot PDA Suffix Tree Improved speed 
It can only return simple 

motifs 
Sagot(1998) 

9. By Tompa PDA Enumeration 
Good at discriminating randomly 

occurring motif 

Cannot handle motifs with 

mutations 
Tompa (1999) 

10. Verbumculus PDA Suffix tree Improved speed of execution 
It can only return simple 

motifs 
Apostolico et al. (2001) 

11. SMILE PDA Suffix Tree 
It can identify complex structured 

motifs 
Space inefficient Marsan and Sagot(2000) 

12. YMF PDA Enumeration 
Allow flexible parameter 

specification 

It can only return simple 

motif 
Sinha and Tompa(2000) 

13. BioProspector SBA & MLA 
Gibbs Sampling and 

hidden markcov 

Allows Multiple optimal motif 

detection 

Very slow with large data 

set 
Liu et al.,(2001) 

14. DRIM SBA 
Hyper geometric 

Framework 
Added feature of Ranking motifs 

Too slow especially for 

large data set 
Eden et al (2007) 

15. GEMS SBA Gene Enrichment 
Identified simple motifs in the 

malaria parasite 

Cannot identify structure 

motifs 
Young et al (2008) 

16. MITRA PDA 
PrefixTree/Mismatch 

tree and Graph 
Allow preprocessing of sequences Space inefficient Eskinand Pevzner(2002) 

17. TPSMILE PDA Suffix Tree 
TPartitioning of search space that 

can run on parallel systems 

TExtra cost of space due to 

the partitioning 
TCarvalho et al (2004) T 

18. RISO PDA 
Box links and suffix 

tree 

TAdditional speed gain due to 

boxlinks 

TAdditional Space 

requirement for the box 

link 

TCarvalho et al (2005) T 

19. RISOTTO PDA 
Box links and suffix 

tree 
Good for long complex motifs 

Extra space need to store 

Extensibility information 
Pisanti et al., (2006) 

20 EXMOTIF PDA 

Inverted index of 

symbols and hash 

table 

actual occurrences of the 

structured motifs instead of the 

relative frequency 

Additional space 

requirement for storing the 

symbols 

Zang and Zaki (2006) 

21. FMGA MLA Genetic Algorithm Can handle difficult search space Time consuming Liu et al. (2004) 

22. GAME MLA Genetic Algorithm Return high fitness motif 
Inconsistent in multiple 

runs 
Wei and Jensen (2006) 

23. MUSA MLA & SBA 
Biclustering and 

PSSM 

No need to specify parameter and 

can be used to determine the 

parameter needed for other 

algorithms 

The speed is unacceptable 

especially for large data set 
Mendes et al(2006) 

24. MOGAMOD MLA Multi Objective Handles multiple optimal motifs It is time consuming Mehmet Kaya (2007) 
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S/N Algorithm Category Operating Principle Strengths Weakness Reference 

Genetic Algorithm efficiently 

25. 
By Mehmet 

Kaya 
MLA Multi-objective GA Can identify structured motifs It is time consuming Mehmet Kaya (2009) 

26 MOTIFST PDA Suffix Tree Fast 

It cannot identify motif in 

the malaria parasite 

genome 

Zare-Mirakaba et al. (2009) 

27. STEME PDA &SBA 

Suffix tree, 

Expectation 

maximization 

Fast and very sensitive 
Can only identify simple 

motifs 

Reid J. and 

Wernisch L (2011) 

28 STGEMS PDA & SBA 
Suffix tree Gene 

Enrichment 

Fast, has a high predictive ability, 

can identify simple and structured 

motifs 

 Makolo et al (2012) 

29 DRIMust PDA Suffix tree 

Handles large data set, ranked lists 

and fast. Timely interaction with 

the results. User’s friendly. Fast. 

 Leibovich et al.(2013) 

30 SLI-REST PDA Suffix tree Linear time motif construction. 
Cannot handle implicit 

suffix trees 
Cazaux and Rivals(2014) 

31 GARPS MLA Genetic Algorithm 
Can handle difficult search space. 

Improves finding faint motifs. 
Time consuming Fan et al.(2013) 

32 EXTREME SBA 
Expectation 

Maximization 

Returns novel and infrequent 

motif. Handles big data. Online. 

Time consuming. 

Noise affect consistency in 

efficiency 

Quang and Xie (2014) 

33 APMotif MLA & SBA 

Affinity Propagation 

Clustering & 

Expectation 

Maximization 

High prediction accuracy. Identify 

weak motifs. Reduce effect of 

local optimum. 

Cannot handle large data 

set. 
Sun et al. (2015) 

34 MISTU SBA 

Stochastic 

Expectation 

Maximization 

Increase site-level sensitivity  Kilpatrick et al. (2014) 

35 TRIPWDM SBA Gibb Sampling Increased Sensitive  Wu et al. (2013) 

Legend: 

PDA- Pattern Driven Approach 

SBA- Statistical Based Approach 

MLA- Machine Learning Approach 
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