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Abstract: The challenging issues of cancer prevention and cure lie in the need for a more detailed knowledge of the internal 

processes and mechanisms of tumour growth. We present a mathematical model of avascular tumour growth formulated in a 

system of coupled nonlinear PDEs. The interaction between the surrounding tissue and cell motility of the developing tumour are 

also included to more realistic replicate an in-vivo environment. The mathematical model is solved using finite difference 

methods and implemented in the C programming language. The CUDA programming framework is then introduced to allow a 

parallelisation of the sequential C implementation. Results show a dramatic Speedup of around 26x that of conventional 

implementations in C. Such increased computational efficiency clearly highlights the possibility of improvements in the 

numerical simulation of more complex mathematical models of 2D and 3D tumour growth, such as angiogenesis and 

vascularisation. Parallelisation of such models can greatly facilitate researchers, clinicians and oncologists by performing 

time-saving in-silico experiments that have the potential to highlight new cancer treatments and therapies without the need for 

the use of valuable resources associated with excessive pre-clinical trials. 

Keywords: Avascular Tumour Growth, Multicellular Spheroids (MCS), Parallel Programming,  

Compute Unified Device Architecture (CUDA), Graphical Processing Unit (GPU) 

 

1. Introduction 

Solid tumours usually undergo a period of avascular growth, 

after which they become dormant for a sustained period 

without access to a sufficient supply of essential nutrients (e.g. 

oxygen and glucose) to continue to proliferate. If the quiescent 

tumour eventually invades the surrounding tissue, a network 

of blood vessels can develop through the process of 

angiogenesis. With the tumour now having access to a rich 

supply of nutrients provided through its own blood supply, as 

well as other growth promoting factors, it enters into full 

vascularisation. While the difference between cancerous and 

healthy regions are apparent in the avascular stage, this 

difference is less clear during vascular growth where the 

tumour becomes aggressive and spreads to other parts of the 

body through the blood stream via metastasis. On the other 

hand, the avascular tumour is generally considered to be a 

solid mass, growing through mitosis and thought, at this early 

stage of development, to be non-invasive to the surrounding 

healthy tissue [1]. Understanding such a complex mechanism 

greatly facilitates the knowledge required to address the 

proliferation of fully vascular tumours. The very early stages 

of tumour growth are often undetectable due their small mass 

size. However, avascular tumour growth is relatively easy to 

replicate in vitro. Such observations strongly suggests that 

very early stage solid tumours remain approximately spherical 

as they grow. Indeed, multicellular spheroids (MCS) have 

been widely used has models of in vitro avascular tumour 

growth from which a deeper insight into tumour heterogeneity 

can be gained for many years [2-4]. 

A typical MCS is composed of three distinct regions. A thin 

outer rim (a few hundred µm thick) of proliferating cells in 

contact with a rich supply of nutrients that surrounds a thicker 

quiescent band of dormant cells. These quiescent cells, 
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although not proliferating, are not dead but lay dormant 

awaiting the necessary nutrients so that they can carry on 

dividing through mitosis. Thus quiescence is a reversible state 

[5]. The final region is an inner core of necrotic cells starved 

of vital nutrients, forming a central mass of cell debris. At 

some stage during early growth, proliferation and necrosis 

reach an equilibrium and the avascular tumour reaches a limit 

size which is thought to be around 1-3 mm in diameter 

consisting of several million cells [6]. Figure 1 shows the 

histology of human colon adenocarcinoma HT29 MCS at two 

levels of magnification. The three phase structure of the MCS 

is clearly apparent with the inner necrotic core surrounded by 

a quiescent region subsequently enclosed by an outer rim of 

proliferating cells. 

 

Figure 1. Histology of human colon adenocarcinoma HT29 MCS [Diameter 1.4 mm]. A. Central section of spheroid of 1415 µm diameter after 18 days in culture 

demonstrating a viable rim of cells surrounding an extensive necrotic core (x 60). B. High magnification (x 310) showing the structural arrangement of MCS in 

the viable rim of approximately 225 µm thickness (Sutherland et al., 1986). 

Progress in mathematical modelling of avascular tumour 

growth has largely been driven by biological and clinical 

observations through in vitro and in vivo experiments, biopsies 

and autopsies. The majority of mathematical models focus on 

the development of a set of spatial-temporal reaction-diffusion 

equations that describe nutrient concentrations coupled with 

population growth, inhibition factors, and cell motility. In 

general, such a method results in a system of coupled 

nonlinear partial differential equations (PDEs) that require a 

numerical solution subject to a number of observable (where 

possible) parameters. In this paper, we present a system of 

PDEs first developed by Sherratt in [7] and Sherratt and 

Chaplain in [8] that describe avascular tumour growth within a 

closely-packed cell population model. Sherratt and Chaplain 

in [8] proposed a more realistic model that additionally takes 

into account the contact between other cells that naturally 

surround a tumour, such as those found in the epithelium. 

Indeed, the most common types of cancer, such as breast, lung, 

prostate, and colon are carcinomas that develop within the 

layers of epithelial tissues. The model developed here should 

be extremely useful in further understanding the formation of 

avascular tumour growths in-vivo. 

2. Mathematical Model of Avascular 

Tumour Growth 

When considering closely-packed cell populations such as 

those found in the epithelium, we need to consider the effect of 

reduced cell motility through natural contact with other 

neighbouring cells. Such a phenomenon, well documented in 

many types of cells [9], is known as contact inhibition of 

migration. Of course, contact inhibition will not prevent a 

tumour from growing in size, but it will have a significant 

effect on the overall growth dynamics of the tumour. As 

previously discussed, the model proposed here by Sherratt and 

Chaplain in [8] is oriented towards an in vivo rather than in 

vitro environment, and crucially allows for nutrient supply 

from underlying tissue. Also, rather than assuming that 

proliferating, quiescent and necrotic cell regions have distinct 

compartments, we consider the transition between states has a 

gradual process [10]. Furthermore, if we are not assuming 

separate compartments, then we must formulate the model in 

terms of continuous cell densities. We denote these densities; 

p(x, t), q(x, t), and n(x, t) for proliferating, quiescent, and 

necrotic cells, respectively. In addition, since the tumour is 

assumed to be growing in the epithelium, its growth will 

naturally be inhibited by the surrounding epithelial cells, 

denoted s(x, t). These cells will themselves be motile, and will 

divide at a rate that depends on the nutrient concentration c(x, 

t). In order to include contact inhibition in the random motility 

of tumour cells, the overall viable cell flux is fractionated 

evenly between the proliferating, quiescent and surrounding 

cell densities. This is based on the assumption that the three 

cell populations have equal motility (obviously necrotic cells 

have no motility). The system of coupled nonlinear PDEs that 

describe this system can be written as (referred to from now as 

Model 1): 

��
�� = ∇. � �
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And the nutrient concentration, c is given by: 

� = �� ��1 − �(� + 	 + 
 + �)�
� + �  

Where α and Γ are dimensionless parameters and c0 is the 

nutrient concentration in the absence of a tumour cell 

population. A cell density of one corresponds to a completely 

closely-packed cell population. In the direction of the core of 

the tumour, we assume that a subset of proliferating cells, with 

limited access to essential nutrients, will become quiescent at 

a rate f(c) and some quiescent cells, which are totally starved 

of nutrients, will undergo necrosis at a rate h(c). We further 

assume that the rate (per cell) of entry into quiescence f (c) is 

larger than the rate of necrosis h(c), at any given nutrient level, 

so that f (c) > h(c). In addition, we assume the growth rate g(c) 

of the proliferating cells is proportional to the concentration 

c(x, t) of nutrients and limited by the neighbouring effects of 

the total cell population. The nutrients are assumed to pass 

through the surface of the tumour and diffuse into the interior 

through the intracellular space sufficiently fast enough that the 

local nutrient concentration c(x, t) can be approximated by a 

quasi-steady state. The functional forms of �(∙), �(∙) and ℎ(∙) along with the chosen model parameters are shown in 

Table 1. Obviously, the type of functional form and parameter 

values will affect cell density in each region, as well as the 

overall speed of tumour growth. 

Table 1. Functional forms and parameter values used in the numerical 

solution to Model 1. 

Function forms Parameter values 

�(�) =  1
2 �1 − tanh (4� − 2)� c0 = 1 

�(c) = 1 + 0.2� α = 0.9 

ℎ(�) =  1
2 �(�) γ = 10 

 Γ = 0.4 

The following initial and zero-flux Neumann boundary 

conditions are imposed (no boundary conditions are required 

for n). 

Initial conditions: 

�(%, 0) =  0.01'(�.)* 

	(%, 0) = 0 

�(%, 0) = 0 


(%, 0) =  Γ�1 − 0.01'(�.)*� 
Neumann boundary conditions: 

��
�% = �	

�% = �

�% = 0 

For systems of coupled nonlinear PDEs like Model 1, finite 

difference methods (FDM) are the dominant approach to 

finding a suitable numerical solution. In this paper, Model 1 is 

solved numerically using an explicit finite difference (EFD) 

scheme as discussed in the next section. 

2.1. Explicit Finite Difference Scheme 

There are three main kinds of FDMs in common use; 

implicit, explicit and Crank-Nicolson. In this paper, we 

implement the explicit scheme as it is the most parallelisable 

of the three methods. Although the EFD scheme is widely 

used since it is relatively easy to apply, its computational 

complexity can grow dramatically with increasing accuracy. 

The finite-difference scheme generally involves producing a 

set of discrete numerical approximations to the partial 

derivative, often in a time-stepping manner. In this way, 

explicit time-marching methods, such as EFD can be thought 

of in terms of being naturally parallel. As well as the 

discretised model, the EFD scheme also requires both the 

initial and boundary conditions. Initial conditions determine 

the state of the system at t = 0. Whilst boundary conditions 

define the behaviour at the edges, such as the Neumann 

boundary conditions relating to zero-flux at the boundaries of 

the avascular tumour imposed in our Model 1. 

To use a FDM to approximate the solution to Model 1, we 

must first discretise across a relevant spatial-temporal domain 

by dividing it into a uniform grid. Then, Model 1 can be 

solved explicitly since it is possible to find the value of any 

inner node n +1 from the value of preceding neighbouring 

nodes at n. At the endpoints j = 0 and j = J, we are on the edges 

of the grid, so we simply apply the given boundary conditions. 

At every time step, we calculate the value of each node on the 

grid based on the discretised system. The grid spacing is 

chosen for numerical stability, and we have to be mindful that 

the EFD scheme is only conditionally stable. That is, the EFD 

is known to be numerically stable and convergent only with a 

suitable choice of model parameters. 

Although other more advanced numerical methods besides 

the EFD scheme are available, such as the alternating direct 

implicit (ADI) method, each method has its own advantages 
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and disadvantages in terms of implementation complexity, 

numerical stability and convergence. In this paper, we decided 

to use the EFD scheme since the form of Model 1 allowed for 

a suitably complex discretisation requiring numerous 

calculations that could be usefully parallelised and with the 

correct choice of parameters both numerically stable and 

convergent. 

2.2. The Discretisation of Model 1 

Note that Model 1 may be written as: 
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So, using a forward finite difference approximation for the time derivative and a central difference approximation for the 

spatial derivative (FTCS), gives: 

�-./) = �-. + ∆�12-. + �3�-.4�-.31 − �-. − 	-. − �-. − 
-.4 − �3�-.4�-.5 
	-./) = 	6. + ∆��76. + �(�6.)�6. − ℎ(�6.)	6.� 


-./) = 
-. + ∆�18-. + �3�-.4
-.3Γ − �-. − 	-. − �-. − 
-.45 
�-./) = �-. + ∆�1ℎ3�-.4	-.5 

Where 

2-. = 3�-/). − �-(). 49-.39-/). − 9-(). 4 + 4�-.9-.39-/). − 29-. + 9-(). 4 − �-.39-/). − 9-(). 4:

4(∆%):39-.4:  

7-. = 3	-/). − 	-(). 49-.39-/). − 9-(). 4 + 4	-.9-.39-/). − 29-. + 9-(). 4 − 	-.39-/). − 9-(). 4:

4(∆%):39-.4:  

8-. = 3
-/). − 
-(). 49-.39-/). − 9-(). 4 + 4
-.9-.39-/). − 29-. + 9-(). 4 − 
-.39-/). − 9-(). 4:

4(∆%):39-.4:  

�6. = ���11 − �3�-. + 	-. + �-. + 
-.45
3� + �-.4  

9-. = �-. + 	-. + 
-. 

∆x and ∆t refer to the time steps and grid spacing, 

respectively. We partition the x-axis into intervals of length ∆x 

and t-axis into intervals of length ∆t. The (x-t)-plane is divided 

into a uniform grid with lines parallel to 0t, defined by: 

%- = ;∆%, ; = 0, 1, 2, … , = 

And by lines parallel to 0x defined by: 

�. = �∆�, � = 0, 1, 2, … , > 

So, �6.  (for example) refers to the density of the 

proliferating cells at the n
th

 time interval and j
th

 spatial 

position. 

3. Implementation 

The main aim of this paper is to investigate potential 

computational efficiency and Speedup of algorithm execution 

moving from a serial to parallel platform. This will be 

quantified based on analysing the Speedup of an 

implementation of an EFD scheme for a system of coupled 
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nonlinear PDEs describing avascular tumour growth. 

3.1. Hardware 

A microprocessor contains a central processing unit (CPU) 

called a core that performs arithmetic and logic operations at 

high speeds. A single-core processor performs one operation 

at a time, but can efficiently switched between different tasks, 

seemingly executing many computations simultaneously. A 

quad-core processor, by contrast, has four CPUs on a single 

chip and executes four separate operations in parallel, greatly 

enhancing compute capability. Moreover, CPU cores are 

generally designed to work well with single-threaded 

applications. To improve thread-performance the CPU core 

employs an architecture that exploits the potential for parallel 

instruction. That is, each CPU core supports scalar and single 

instruction multiple data (SIMD) operations so that the 

execution of multiple operations per cycle are allowed. 

However, such architecture restricts the size and complexity 

of the processor limiting the number of cores that can be 

integrated on a single die. In contrast, the graphics processing 

unit (GPU) trade off fast single thread performance and clock 

speed for high throughput. The GPU consists of an array of 

highly threaded streaming multiprocessors (SM) with each 

having their own individual streaming processors (SP) that 

share control logic and instruction cache. Each SM consists of 

a single fetch unit and eight scalar units. So that each 

instruction is retrieved and executed in parallel on all eight 

scalar units over four cycles for 32 data elements (a warp) [11]. 

This keeps the available area of each SM relatively small, and 

therefore more SMs can be packed per die, as compared to the 

number of CPU cores. 

The hardware used for the sequential C implementation was 

a 4
th

 generation Intel
®
 Core

™
 i7-4790K CPU (4 core) 

processor running on Windows 8.1. The C implementation 

was developed and compiled in Microsoft
® 

Visual Studio 

2012. The CUDA program was also developed in Microsoft
® 

Visual Studio 2012 using CUDA version 7.0 and tested on an 

Nvidia GeForce
®
 GTX

TM
 780 GPU card with compute 

capability 3.5. Table 2 gives a more detailed specification of 

the CPU and GPU hardware.  

Although a quad core processor has multiple CPUs, they 

share other components, such as random access memory 

(RAM). Memory bandwidth, the speed at which the processor 

chip accesses data in RAM, can become a bottleneck when all 

the processors need to access the same information and store 

data. For this reason, a quad core rarely performs at exactly 

four times that of a single core, but instead typically runs 

between two and four times. From Table 2, note that the 

Core
TM

 i7 provides a memory bandwidth of 25.6 GB/s, while 

the GTX
TM

 780 provides a bandwidth of 288.4 GB/s resulting 

in a very useful peak bandwidth ratio of ~11.3x. 

Table 2. CPU and GPU hardware specifications. 

 
Intel® Intel® CoreTM 

i7-4790K (CPU) 

Nvidia GeForce® 

GTXTM 780 (GPU) 

Clock speed (GHz) 4.00 0.863 

# of cores 4 2,304 

Memory bandwidth 

(GB/s) 
25.6 288.4 

3.2. Performance Benchmarks 

The test platform will make use of C for the sequential 

implementation and the CUDA programming framework for 

the parallel implementation of the EFD scheme. The C 

language is an obvious choice for professional development 

and a language that is heavily adopted throughout the 

computational biology community. One of the most important 

functions of any programming language is to provide facilities 

for managing memory and the objects that are stored in 

memory. C provides several powerful methods of allocating 

and managing memory making it an extremely versatile 

especially when considering computational efficiency and 

increased speed of code execution. C is also the natural choice 

for any CUDA enabled development since it relies itself on 

extensions from the C language as a basis for its own 

implementation. 

We are fully aware that it is possible to implement C in a 

parallel context, indeed, the Gauss-Seidel red black method 

(GSRB) is a FDM for solving systems of coupled nonlinear 

PDEs in parallel that can greatly enhance the speed of 

sequential code execution. Nevertheless, performance here 

will be established on multicore processors executing 

sequential code in C that will subsequently be adapted to an 

equivalent parallel algorithm under the CUDA programming 

framework. The actual platform performance will be based on 

the execution time of each algorithm implementation and 

subsequent Speedup. 

3.2.1. Amdahl’s Law 

The theoretical Speedup S of an algorithm is given by 

Amdahl’s law [12]: 

? =  >(1)
>(�) 

Where T(n) is the execution time when using n processors. 

Here, the execution time is the difference between two clock 

statements in each of the main algorithms. One placed at the 

start, and the other at the end of the kernel looping routine 

(including the device to host transfer in CUDA). Thus, 

execution time represents the time taken to complete the entire 

process of a single simulation of the numerical solution to 

Model 1. 

3.2.2. Floating Point Operations 

We can estimate the likely Speedup of our C and CUDA 

implementations by calculating the floating point operations 

per second (FLOPS). FLOPS are a measure of processing 

speed, equal to the number of operations the CPU and GPU 

can perform per second. In general, a processor can do a 

certain number of FLOPS (GFLOPS) every time its internal 

clock ticks. These clock ticks are called cycles measured by 

the processor clock speed. It is important to note that there is 

quite a difference between single-precision and 

double-precision FLOPS. A processor that is capable of many 

single-precision GFLOPS may only be capable of a small 

fraction of that many double-precision calculations. For the 

Core
™

 i7-4790K CPU (4 core) processor Intel
® 

assume the 



70 Paul M. Darbyshire:  A System of Coupled Nonlinear Partial Differential Equations Describing Avascular Tumour   

Growth Are Solved Numerically Using Parallel Programming to Assess Computational Speedup 

following simple multiplication formula to determine the CPU 

GFLOPS: 

�@A�B 
�''C % �A9'
 % DEFG? �'9 �@A�B �H�@' % IJK L�
�92��LA�
 

Where MAD are the number of Multiply-Add instructions 

per clock cycle as per the processor specifications. Therefore, 

CPU GFLOPS are given by: 

4 % 4 % 2 %2 = 64  
i.e. 64 GFLOPS (double precision float point) 

Here we have assumed two double precision floating point 

numbers per clock cycle.  For single precision, we need to 

double the number i.e. 128 GFLOPS (single precision float 

point). For GPU GFLOPS, we have similarly: 

0.863 % 2304 % 2 = 3977 

i.e. 3977 GFLOPS (single precision floating point) 

Based on these values, the estimated Speedup and peak 

performance between the CPU and GPU implementations 

should be in the region of 31.3x. Of course, this value is very 

subjective and reliant on numerous other factors, such as 

correct code optimisation, full usage of MAD instructions, 

efficient use of memory, etc. and therefore should only be used 

as a guideline. 

3.3. The CUDA Programming Framework 

For some time the usual method for improving performance 

on the CPU was to simply increase the processor clock speed. 

Since then, high performance computing has provided 

dramatic improvements in computational efficiency by 

gradually increasing the number of processor cores. Indeed, 

the majority of computers today have at least four or more 

cores per die allowing multicore processing capabilities and 

parallel implementations effortlessly. In a similar 

development driven path, early GPUs were initially designed 

for producing colour texture coordinates matching pixels on 

the screen using a programmable arithmetic unit knows as a 

pixel shader. Since the arithmetic being performed on the 

input colours and textures was completely controlled by the 

programmer, it was soon realised that these input ‘colours’ 

could effectively be any data type. If the inputs were 

considered numerical data, the pixel shaders could be 

programmed to perform arbitrary computations on this other 

type of data. The new compute unified device architecture 

(CUDA) developed by Nvidia completely revolutionised 

computation on the GPU. The CUDA programming 

framework included a unified shader pipeline that allows each 

arithmetic logic unit (ALU) on the processor to be marshalled 

by a program intending to perform general-purpose 

computations (see Figure 2). 

GPU-accelerated applications run the sequential part of 

their workload on the CPU, which is optimised for 

single-threaded performance, while accelerating parallel 

processing on the GPU. However, since the GPU is a 

coprocessor usually on a separate PCI-express card, data must 

first be explicitly copied from the system memory to global 

memory on the GPU. For this reason, performance bottlenecks 

are often minimised by making intelligent use of memory 

bandwidth. Despite these drawbacks, GPUs are an extremely 

viable candidate for performing highly intensive computations 

that exhibit high levels of parallelism. 

 

Figure 2. A schematic of the CPU vs. GPU architecture [11]. 

3.3.1. Threads, Blocks, Grids and Memory 

 

Figure 3. Schematic of the arrangement of threads, blocks, and grids between 

the host and device [11]. 

The CUDA programming framework provides an API for 

programmers that exposes the underlying GPU architecture, 

which is a collection of single instruction, multiple data 

(SIMD) processors capable of switching between thousands 

of threads. CUDA further extends C by allowing the 

programmer to define C functions known as kernels, that are 

executed N times concurrently by N different CUDA threads. 
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A kernel is defined using the __global__ declaration specifier 

and the number of CUDA threads that execute the kernel is 

specified using a <<<GRIDSIZE, BLOCKSIZE>>> 

execution configuration syntax. Each thread that executes the 

kernel is given a unique thread id that is accessible within the 

kernel through the threadIdx variable. In CUDA, the threads 

are grouped into blocks and the blocks are grouped into grids 

(see Figure 3). There is a limit to the number of threads per 

block, on current GPUs, a thread block may contain up to 

1,024 threads. A thread block size of 256 threads, although 

arbitrary, is a common choice [11]. 

 

Figure 4. Schematic of the arrangement of memory within grids and blocks 

[11]. 

Threads within a block can cooperate by sharing data 

through shared memory and by synchronising their execution 

to coordinate memory access. More precisely, one can specify 

synchronisation points in the kernel by calling the 

__syncthreads() function [11]. Indeed, CUDA makes 

available several different types of accessible memory options. 

For instance, one very practical type of memory is constant 

memory. Constant memory is used for data that will not 

change during the execution of a kernel and in some situations 

can reduced memory bandwidth. CUDA also provides access 

to shared memory. With this type of memory it is possible to 

modify variables resident in the shared memory. CUDA treats 

variables in shared memory differently to standard variables. 

That is, CUDA creates copy of the variables for each block it 

launches on the GPU and thereby allows every thread in that 

block shared access to the memory. This is extremely useful 

since a major drawback of current GPU vs. CPU 

implementations is the need to continually transfer data 

between host and device. The correct usage of shared memory 

along with synchronisation can greatly alleviate some of these 

efficiency problems. Also, threads cannot see or modify the 

copied variable that can be seen in the other blocks and so 

provides a favourable mechanism by which threads within a 

block can communicate and collaborate on workloads. 

Furthermore, shared memory buffers reside physically on the 

GPU thereby greatly improving the latency of access and 

per-block programmable management cache. Other types of 

available memory include global memory; the slowest of the 

memory available but the largest in size, and texture memory 

(see Figure 4). 

3.3.2. The C and CUDA Implementations 

Algorithm 1. C implementation for the EFD scheme. 

1: Define model parameters 

2: Declare pointers 

3: Initialise array memory 

4: Set initial conditions 

5: Start clock() 

6: for n = 1:Nt do 

7: for j = 1:Nx do 

8: Update nodes �-./), 	-./), 
-./), �-./) 

9: end for 

10: end for 

11: End clock() 

12: Print results 

13: Free memory 

The CUDA programming model requires that arrays use a 

single contiguous block of linear memory. So, rather than 

declaring a 2D array in C, we use a single linear block of 

memory and reference it as if it were a 2D array using the C 

calloc function. calloc also initialises all elements to zero and 

subsequently returns a null pointer if it cannot allocate a linear 

block of adequate size. The algorithm developed to implement 

the C program for the EFD scheme is shown in Algorithm 1. 

Moving from C to CUDA requires additional coding, as 

well as some manipulation of the kernel. Note that under the 

CUDA programming framework, we refer to the CPU as the 

host and the GPU as the device. With CUDA, code is required 

to initialise memory on the device, and to deal with the 

transfers of data to the device and back to the host after the 

kernel execution has completed. Basically, there are three 

steps that are essential to the successfully execution of a kernel 

on the GPU. Firstly, data must initialised and transferred from 

the host to the device global memory. Once the data is on the 

GPU, the kernel is executed N times and launches the required 

number of N threads for the device. When all threads have 

completed execution, enforced through synchronisation, data 

is then be transferred back to the host from the device. In the 

CUDA programming model, device memory is typically 

allocated using cudaMalloc()and data is transferred between 

host and device memory using cudaMemcpy depending on the 

data flow i.e. either cudaMemcpyHostToDevice or 

cudaMemcpyDeviceToHost. Memory is subsequently freed 

after completion using cudaFree(). As already mentioned, 
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each block of threads has access to shared memory. Making 

the correct use of this memory can reduce the amount of data 

that has to be transferred from global memory, which is 

typically the performance bottleneck in many GPU vs. CPU 

algorithms [11]. The algorithm for the implementation of the 

CUDA kernel for the EFD scheme is shown in Algorithm 2. 

Algorithm 2. CUDA kernel for the EFD scheme. 

1: Get current thread index 

2: if (i<N) then 

3: Update nodes �-./), 	-./), 
-./), �-./) 

4: end if 

5: Synchronise threads 

Algorithm 3 shows the main CUDA implementation for the 

EFD scheme. 

Algorithm 3. CUDA main implementation for the EFD scheme. 

1: Define model parameters 

2: Declare host and device pointers 

3: Allocate host and device memory 

4: Set initial conditions 

5: Copy host arrays to device 

6: Declare GRIDSIZE and BLOCKSIZE 

7: Start clock() 

8: for n = 1:Nt do 

9: for j = 1:Nx do 

10: Launch kernel<<<GRIDSIZE,BLOCKSIZE,>>> 

11: end for 

12: Synchronise threads 

13: end for 

14: End clock() 

15: Copy device arrays to host 

16: Print results 

17: Free memory 

4. Results and Discussion 

Table 3 shows the execution time for the C and CUDA 

implementations EFD scheme solution to Model 1. 

Table 3. Performance results for C and CUDA implementations and 

subsequent Speedup of CUDA over C. 

Iterations Speedup 

100,000 1.03 

500,000 1.63 

1,000,000 3.04 

5,000,000 22.5 

10,000,000 29.2 

Table 3 shows that at low iterations there is practically no 

difference between the implementations in C or CUDA. In 

fact, this is entirely what we would expect since the power of 

the GPU does not show itself unless it is sharing the majority 

of the workload and handling millions (and billions) of 

calculations. Indeed, at such low iterations the bottleneck 

between transferring data between the host and device global 

memory clearly hinders any computational improvement in 

performance.  However, when considering iterations in the 

several millions, CUDA far outstrips C in execution time and 

efficiency. Indeed, the GPU showed a Speedup of an average 

25.9x that of the sequential C implementation and very close 

to that of the estimated peak performance of 31.3x Speedup 

based on the GFLOPS calculation. 

Whilst we only considered a 1D implementation, we have 

shown that the CUDA programming framework can be 

extremely valuable in dramatically increasing execution time 

and efficiency. Moreover, when challenged with more 

complex systems of coupled nonlinear PDEs, for example in 

studying the processes of angiogenesis in breast cancer or 

vascular brain tumours, the need for parallel algorithms is 

essential. Indeed, it is assumed that the implementation of 

more advanced numerical schemes, that can be considered 

massively parallel, will provide an extremely productive 

computational methodology. The authors have already begun 

implementing more complex 2D and 3D numerical solutions 

on the CUDA programming framework with very promising 

initial results. Moreover, greater biological insight and clinical 

knowledge can be gained from such implementations. 

5. Conclusions 

Obtaining a numerical solution to a system of coupled 

nonlinear PDEs can be a daunting computational task, even in 

1D. The aim of this paper was to show that a numerical 

solution to a system of coupled nonlinear PDEs, such as those 

frequently encountered in computational biology, could 

benefit from parallelisation. A suitable platform was shown to 

be Nvidia’s CUDA programming framework which 

substantially improved computational efficiency and 

execution time in a 1D implementation of an EFD scheme, 

returning Speedups around 26x that of conventional 

methodologies. 

The modelling of avascular tumours is often seen as a first 

step towards the development of more complex models of 

later stage tumour growth, such as angiogenesis and 

vascularisation. Mathematical and computational modelling is 

playing an increasingly important role in helping biomedical 

researchers in understanding the different aspects of solid 

tumour dynamics. In-silico experiments and simulations, such 

as those performed in this paper, give researchers, clinicians 

and oncologists the tools and opportunity to observe effects of 

different treatments on cancerous cells in realistic time frames. 

This will inevitably lead to more rapid improvements in 

effectual therapeutic strategies as well as aiding in the 

discovery of new forms of treatment. Personalised healthcare, 

adapted to patient specific symptoms, could be used in therapy 

planning by suggesting irradiation regions adapted to growth 

dynamics or optimal temporal distribution of chemotherapy 

through computer simulation. In fact, getting new 

chemotherapy and other anti-cancer drugs into pre-clinical 

trials is relying more and more on supportive evidence from -

in-silico experiments. The ability to use advanced 

computational methods to simulate the virtual stages of 

pre-clinical trials greatly reduces time to market and 

laboratory resources. If we consider the billions of dollars 

spent on cancer research and that lost in unnecessary and time 
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consuming clinical trials, the case for in-silico experiments 

that make use of advancements in computational technology, 

is a first port of call for any research establishment or 

pharmaceutical company dedicated to fighting diseases such 

as cancer. 
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