

Computational Biology and Bioinformatics
2015; 3(5): 65-73

Published online August 25, 2015 (http://www.sciencepublishinggroup.com/j/cbb)

doi: 10.11648/j.cbb.20150305.11

ISSN: 2330-8265 (Print); ISSN: 2330-8281 (Online)

A System of Coupled Nonlinear Partial Differential
Equations Describing Avascular Tumour Growth Are Solved
Numerically Using Parallel Programming to Assess
Computational Speedup

Paul M. Darbyshire

Department of Computational Biophysics, Algenet Cancer Research, Nottingham, UK

Email address:
rd@algenet.com

To cite this article:
Paul M. Darbyshire. A System of Coupled Nonlinear Partial Differential Equations Describing Avascular Tumour Growth Are Solved

Numerically Using Parallel Programming to Assess Computational Speedup. Computational Biology and Bioinformatics.

Vol. 3, No. 5, 2015, pp. 65-73. doi: 10.11648/j.cbb.20150305.11

Abstract: The challenging issues of cancer prevention and cure lie in the need for a more detailed knowledge of the internal

processes and mechanisms of tumour growth. We present a mathematical model of avascular tumour growth formulated in a

system of coupled nonlinear PDEs. The interaction between the surrounding tissue and cell motility of the developing tumour are

also included to more realistic replicate an in-vivo environment. The mathematical model is solved using finite difference

methods and implemented in the C programming language. The CUDA programming framework is then introduced to allow a

parallelisation of the sequential C implementation. Results show a dramatic Speedup of around 26x that of conventional

implementations in C. Such increased computational efficiency clearly highlights the possibility of improvements in the

numerical simulation of more complex mathematical models of 2D and 3D tumour growth, such as angiogenesis and

vascularisation. Parallelisation of such models can greatly facilitate researchers, clinicians and oncologists by performing

time-saving in-silico experiments that have the potential to highlight new cancer treatments and therapies without the need for

the use of valuable resources associated with excessive pre-clinical trials.

Keywords: Avascular Tumour Growth, Multicellular Spheroids (MCS), Parallel Programming,

Compute Unified Device Architecture (CUDA), Graphical Processing Unit (GPU)

1. Introduction

Solid tumours usually undergo a period of avascular growth,

after which they become dormant for a sustained period

without access to a sufficient supply of essential nutrients (e.g.

oxygen and glucose) to continue to proliferate. If the quiescent

tumour eventually invades the surrounding tissue, a network

of blood vessels can develop through the process of

angiogenesis. With the tumour now having access to a rich

supply of nutrients provided through its own blood supply, as

well as other growth promoting factors, it enters into full

vascularisation. While the difference between cancerous and

healthy regions are apparent in the avascular stage, this

difference is less clear during vascular growth where the

tumour becomes aggressive and spreads to other parts of the

body through the blood stream via metastasis. On the other

hand, the avascular tumour is generally considered to be a

solid mass, growing through mitosis and thought, at this early

stage of development, to be non-invasive to the surrounding

healthy tissue [1]. Understanding such a complex mechanism

greatly facilitates the knowledge required to address the

proliferation of fully vascular tumours. The very early stages

of tumour growth are often undetectable due their small mass

size. However, avascular tumour growth is relatively easy to

replicate in vitro. Such observations strongly suggests that

very early stage solid tumours remain approximately spherical

as they grow. Indeed, multicellular spheroids (MCS) have

been widely used has models of in vitro avascular tumour

growth from which a deeper insight into tumour heterogeneity

can be gained for many years [2-4].

A typical MCS is composed of three distinct regions. A thin

outer rim (a few hundred µm thick) of proliferating cells in

contact with a rich supply of nutrients that surrounds a thicker

quiescent band of dormant cells. These quiescent cells,

66 Paul M. Darbyshire: A System of Coupled Nonlinear Partial Differential Equations Describing Avascular Tumour

Growth Are Solved Numerically Using Parallel Programming to Assess Computational Speedup

although not proliferating, are not dead but lay dormant

awaiting the necessary nutrients so that they can carry on

dividing through mitosis. Thus quiescence is a reversible state

[5]. The final region is an inner core of necrotic cells starved

of vital nutrients, forming a central mass of cell debris. At

some stage during early growth, proliferation and necrosis

reach an equilibrium and the avascular tumour reaches a limit

size which is thought to be around 1-3 mm in diameter

consisting of several million cells [6]. Figure 1 shows the

histology of human colon adenocarcinoma HT29 MCS at two

levels of magnification. The three phase structure of the MCS

is clearly apparent with the inner necrotic core surrounded by

a quiescent region subsequently enclosed by an outer rim of

proliferating cells.

Figure 1. Histology of human colon adenocarcinoma HT29 MCS [Diameter 1.4 mm]. A. Central section of spheroid of 1415 µm diameter after 18 days in culture

demonstrating a viable rim of cells surrounding an extensive necrotic core (x 60). B. High magnification (x 310) showing the structural arrangement of MCS in

the viable rim of approximately 225 µm thickness (Sutherland et al., 1986).

Progress in mathematical modelling of avascular tumour

growth has largely been driven by biological and clinical

observations through in vitro and in vivo experiments, biopsies

and autopsies. The majority of mathematical models focus on

the development of a set of spatial-temporal reaction-diffusion

equations that describe nutrient concentrations coupled with

population growth, inhibition factors, and cell motility. In

general, such a method results in a system of coupled

nonlinear partial differential equations (PDEs) that require a

numerical solution subject to a number of observable (where

possible) parameters. In this paper, we present a system of

PDEs first developed by Sherratt in [7] and Sherratt and

Chaplain in [8] that describe avascular tumour growth within a

closely-packed cell population model. Sherratt and Chaplain

in [8] proposed a more realistic model that additionally takes

into account the contact between other cells that naturally

surround a tumour, such as those found in the epithelium.

Indeed, the most common types of cancer, such as breast, lung,

prostate, and colon are carcinomas that develop within the

layers of epithelial tissues. The model developed here should

be extremely useful in further understanding the formation of

avascular tumour growths in-vivo.

2. Mathematical Model of Avascular

Tumour Growth

When considering closely-packed cell populations such as

those found in the epithelium, we need to consider the effect of

reduced cell motility through natural contact with other

neighbouring cells. Such a phenomenon, well documented in

many types of cells [9], is known as contact inhibition of

migration. Of course, contact inhibition will not prevent a

tumour from growing in size, but it will have a significant

effect on the overall growth dynamics of the tumour. As

previously discussed, the model proposed here by Sherratt and

Chaplain in [8] is oriented towards an in vivo rather than in

vitro environment, and crucially allows for nutrient supply

from underlying tissue. Also, rather than assuming that

proliferating, quiescent and necrotic cell regions have distinct

compartments, we consider the transition between states has a

gradual process [10]. Furthermore, if we are not assuming

separate compartments, then we must formulate the model in

terms of continuous cell densities. We denote these densities;

p(x, t), q(x, t), and n(x, t) for proliferating, quiescent, and

necrotic cells, respectively. In addition, since the tumour is

assumed to be growing in the epithelium, its growth will

naturally be inhibited by the surrounding epithelial cells,

denoted s(x, t). These cells will themselves be motile, and will

divide at a rate that depends on the nutrient concentration c(x,

t). In order to include contact inhibition in the random motility

of tumour cells, the overall viable cell flux is fractionated

evenly between the proliferating, quiescent and surrounding

cell densities. This is based on the assumption that the three

cell populations have equal motility (obviously necrotic cells

have no motility). The system of coupled nonlinear PDEs that

describe this system can be written as (referred to from now as

Model 1):

��
�� = ∇. � �

� + 	 +
 ∇(� + 	 +
)
 + �(�)�(1 − � − 	 − � −
) − �(�)�

 Computational Biology and Bioinformatics 2015; 3(5): 65-73 67

�	
�� = ∇. � 	

� + 	 +
 ∇(� + 	 +
)
 + �(�)� − ℎ(�)	

�

�� = ∇. �

� + 	 +
 ∇(� + 	 +
)
 + �(�)
(Γ − � − 	 − � −
)

��
�� = ℎ(�)	

And the nutrient concentration, c is given by:

� = �� ��1 − �(� + 	 +
 + �)�
� + �

Where α and Γ are dimensionless parameters and c0 is the

nutrient concentration in the absence of a tumour cell

population. A cell density of one corresponds to a completely

closely-packed cell population. In the direction of the core of

the tumour, we assume that a subset of proliferating cells, with

limited access to essential nutrients, will become quiescent at

a rate f(c) and some quiescent cells, which are totally starved

of nutrients, will undergo necrosis at a rate h(c). We further

assume that the rate (per cell) of entry into quiescence f (c) is

larger than the rate of necrosis h(c), at any given nutrient level,

so that f (c) > h(c). In addition, we assume the growth rate g(c)

of the proliferating cells is proportional to the concentration

c(x, t) of nutrients and limited by the neighbouring effects of

the total cell population. The nutrients are assumed to pass

through the surface of the tumour and diffuse into the interior

through the intracellular space sufficiently fast enough that the

local nutrient concentration c(x, t) can be approximated by a

quasi-steady state. The functional forms of �(∙), �(∙) and ℎ(∙) along with the chosen model parameters are shown in

Table 1. Obviously, the type of functional form and parameter

values will affect cell density in each region, as well as the

overall speed of tumour growth.

Table 1. Functional forms and parameter values used in the numerical

solution to Model 1.

Function forms Parameter values

�(�) = 1
2 �1 − tanh (4� − 2)� c0 = 1

�(c) = 1 + 0.2� α = 0.9

ℎ(�) = 1
2 �(�) γ = 10

 Γ = 0.4

The following initial and zero-flux Neumann boundary

conditions are imposed (no boundary conditions are required

for n).

Initial conditions:

�(%, 0) = 0.01'(�.)*

	(%, 0) = 0

�(%, 0) = 0

(%, 0) = Γ�1 − 0.01'(�.)*�
Neumann boundary conditions:

��
�% = �	

�% = �

�% = 0

For systems of coupled nonlinear PDEs like Model 1, finite

difference methods (FDM) are the dominant approach to

finding a suitable numerical solution. In this paper, Model 1 is

solved numerically using an explicit finite difference (EFD)

scheme as discussed in the next section.

2.1. Explicit Finite Difference Scheme

There are three main kinds of FDMs in common use;

implicit, explicit and Crank-Nicolson. In this paper, we

implement the explicit scheme as it is the most parallelisable

of the three methods. Although the EFD scheme is widely

used since it is relatively easy to apply, its computational

complexity can grow dramatically with increasing accuracy.

The finite-difference scheme generally involves producing a

set of discrete numerical approximations to the partial

derivative, often in a time-stepping manner. In this way,

explicit time-marching methods, such as EFD can be thought

of in terms of being naturally parallel. As well as the

discretised model, the EFD scheme also requires both the

initial and boundary conditions. Initial conditions determine

the state of the system at t = 0. Whilst boundary conditions

define the behaviour at the edges, such as the Neumann

boundary conditions relating to zero-flux at the boundaries of

the avascular tumour imposed in our Model 1.

To use a FDM to approximate the solution to Model 1, we

must first discretise across a relevant spatial-temporal domain

by dividing it into a uniform grid. Then, Model 1 can be

solved explicitly since it is possible to find the value of any

inner node n +1 from the value of preceding neighbouring

nodes at n. At the endpoints j = 0 and j = J, we are on the edges

of the grid, so we simply apply the given boundary conditions.

At every time step, we calculate the value of each node on the

grid based on the discretised system. The grid spacing is

chosen for numerical stability, and we have to be mindful that

the EFD scheme is only conditionally stable. That is, the EFD

is known to be numerically stable and convergent only with a

suitable choice of model parameters.

Although other more advanced numerical methods besides

the EFD scheme are available, such as the alternating direct

implicit (ADI) method, each method has its own advantages

68 Paul M. Darbyshire: A System of Coupled Nonlinear Partial Differential Equations Describing Avascular Tumour

Growth Are Solved Numerically Using Parallel Programming to Assess Computational Speedup

and disadvantages in terms of implementation complexity,

numerical stability and convergence. In this paper, we decided

to use the EFD scheme since the form of Model 1 allowed for

a suitably complex discretisation requiring numerous

calculations that could be usefully parallelised and with the

correct choice of parameters both numerically stable and

convergent.

2.2. The Discretisation of Model 1

Note that Model 1 may be written as:

��
�� = �

�% + �
� + 	 +

�(� + 	 +
)
�% , + �(�)�(1 − � − 	 − � −
) − �(�)�

�	
�� = �

�% � 	
� + 	 +

�(� + 	 +
)
�%
 + �(�)� − ℎ(�)	

�

�� = �

�% �

� + 	 +

�(� + 	 +
)
�%
 + �(�)
(Γ − � − 	 − � −
)

��
�� = ℎ(�)	

So, using a forward finite difference approximation for the time derivative and a central difference approximation for the

spatial derivative (FTCS), gives:

�-./) = �-. + ∆�12-. + �3�-.4�-.31 − �-. − 	-. − �-. −
-.4 − �3�-.4�-.5
	-./) = 	6. + ∆��76. + �(�6.)�6. − ℎ(�6.)	6.�

-./) =
-. + ∆�18-. + �3�-.4
-.3Γ − �-. − 	-. − �-. −
-.45
�-./) = �-. + ∆�1ℎ3�-.4	-.5

Where

2-. = 3�-/). − �-(). 49-.39-/). − 9-(). 4 + 4�-.9-.39-/). − 29-. + 9-(). 4 − �-.39-/). − 9-(). 4:

4(∆%):39-.4:

7-. = 3	-/). − 	-(). 49-.39-/). − 9-(). 4 + 4	-.9-.39-/). − 29-. + 9-(). 4 − 	-.39-/). − 9-(). 4:

4(∆%):39-.4:

8-. = 3
-/). −
-(). 49-.39-/). − 9-(). 4 + 4
-.9-.39-/). − 29-. + 9-(). 4 −
-.39-/). − 9-(). 4:

4(∆%):39-.4:

�6. = ���11 − �3�-. + 	-. + �-. +
-.45
3� + �-.4

9-. = �-. + 	-. +
-.

∆x and ∆t refer to the time steps and grid spacing,

respectively. We partition the x-axis into intervals of length ∆x

and t-axis into intervals of length ∆t. The (x-t)-plane is divided

into a uniform grid with lines parallel to 0t, defined by:

%- = ;∆%, ; = 0, 1, 2, … , =

And by lines parallel to 0x defined by:

�. = �∆�, � = 0, 1, 2, … , >

So, �6. (for example) refers to the density of the

proliferating cells at the n
th

 time interval and j
th

 spatial

position.

3. Implementation

The main aim of this paper is to investigate potential

computational efficiency and Speedup of algorithm execution

moving from a serial to parallel platform. This will be

quantified based on analysing the Speedup of an

implementation of an EFD scheme for a system of coupled

 Computational Biology and Bioinformatics 2015; 3(5): 65-73 69

nonlinear PDEs describing avascular tumour growth.

3.1. Hardware

A microprocessor contains a central processing unit (CPU)

called a core that performs arithmetic and logic operations at

high speeds. A single-core processor performs one operation

at a time, but can efficiently switched between different tasks,

seemingly executing many computations simultaneously. A

quad-core processor, by contrast, has four CPUs on a single

chip and executes four separate operations in parallel, greatly

enhancing compute capability. Moreover, CPU cores are

generally designed to work well with single-threaded

applications. To improve thread-performance the CPU core

employs an architecture that exploits the potential for parallel

instruction. That is, each CPU core supports scalar and single

instruction multiple data (SIMD) operations so that the

execution of multiple operations per cycle are allowed.

However, such architecture restricts the size and complexity

of the processor limiting the number of cores that can be

integrated on a single die. In contrast, the graphics processing

unit (GPU) trade off fast single thread performance and clock

speed for high throughput. The GPU consists of an array of

highly threaded streaming multiprocessors (SM) with each

having their own individual streaming processors (SP) that

share control logic and instruction cache. Each SM consists of

a single fetch unit and eight scalar units. So that each

instruction is retrieved and executed in parallel on all eight

scalar units over four cycles for 32 data elements (a warp) [11].

This keeps the available area of each SM relatively small, and

therefore more SMs can be packed per die, as compared to the

number of CPU cores.

The hardware used for the sequential C implementation was

a 4
th

 generation Intel
®
 Core

™
 i7-4790K CPU (4 core)

processor running on Windows 8.1. The C implementation

was developed and compiled in Microsoft
®

Visual Studio

2012. The CUDA program was also developed in Microsoft
®

Visual Studio 2012 using CUDA version 7.0 and tested on an

Nvidia GeForce
®
 GTX

TM
 780 GPU card with compute

capability 3.5. Table 2 gives a more detailed specification of

the CPU and GPU hardware.

Although a quad core processor has multiple CPUs, they

share other components, such as random access memory

(RAM). Memory bandwidth, the speed at which the processor

chip accesses data in RAM, can become a bottleneck when all

the processors need to access the same information and store

data. For this reason, a quad core rarely performs at exactly

four times that of a single core, but instead typically runs

between two and four times. From Table 2, note that the

Core
TM

 i7 provides a memory bandwidth of 25.6 GB/s, while

the GTX
TM

 780 provides a bandwidth of 288.4 GB/s resulting

in a very useful peak bandwidth ratio of ~11.3x.

Table 2. CPU and GPU hardware specifications.

Intel® Intel® CoreTM

i7-4790K (CPU)

Nvidia GeForce®

GTXTM 780 (GPU)

Clock speed (GHz) 4.00 0.863

of cores 4 2,304

Memory bandwidth

(GB/s)
25.6 288.4

3.2. Performance Benchmarks

The test platform will make use of C for the sequential

implementation and the CUDA programming framework for

the parallel implementation of the EFD scheme. The C

language is an obvious choice for professional development

and a language that is heavily adopted throughout the

computational biology community. One of the most important

functions of any programming language is to provide facilities

for managing memory and the objects that are stored in

memory. C provides several powerful methods of allocating

and managing memory making it an extremely versatile

especially when considering computational efficiency and

increased speed of code execution. C is also the natural choice

for any CUDA enabled development since it relies itself on

extensions from the C language as a basis for its own

implementation.

We are fully aware that it is possible to implement C in a

parallel context, indeed, the Gauss-Seidel red black method

(GSRB) is a FDM for solving systems of coupled nonlinear

PDEs in parallel that can greatly enhance the speed of

sequential code execution. Nevertheless, performance here

will be established on multicore processors executing

sequential code in C that will subsequently be adapted to an

equivalent parallel algorithm under the CUDA programming

framework. The actual platform performance will be based on

the execution time of each algorithm implementation and

subsequent Speedup.

3.2.1. Amdahl’s Law

The theoretical Speedup S of an algorithm is given by

Amdahl’s law [12]:

? = >(1)
>(�)

Where T(n) is the execution time when using n processors.

Here, the execution time is the difference between two clock

statements in each of the main algorithms. One placed at the

start, and the other at the end of the kernel looping routine

(including the device to host transfer in CUDA). Thus,

execution time represents the time taken to complete the entire

process of a single simulation of the numerical solution to

Model 1.

3.2.2. Floating Point Operations

We can estimate the likely Speedup of our C and CUDA

implementations by calculating the floating point operations

per second (FLOPS). FLOPS are a measure of processing

speed, equal to the number of operations the CPU and GPU

can perform per second. In general, a processor can do a

certain number of FLOPS (GFLOPS) every time its internal

clock ticks. These clock ticks are called cycles measured by

the processor clock speed. It is important to note that there is

quite a difference between single-precision and

double-precision FLOPS. A processor that is capable of many

single-precision GFLOPS may only be capable of a small

fraction of that many double-precision calculations. For the

Core
™

 i7-4790K CPU (4 core) processor Intel
®

assume the

70 Paul M. Darbyshire: A System of Coupled Nonlinear Partial Differential Equations Describing Avascular Tumour

Growth Are Solved Numerically Using Parallel Programming to Assess Computational Speedup

following simple multiplication formula to determine the CPU

GFLOPS:

�@A�B
�''C % �A9'
 % DEFG? �'9 �@A�B �H�@' % IJK L�
�92��LA�

Where MAD are the number of Multiply-Add instructions

per clock cycle as per the processor specifications. Therefore,

CPU GFLOPS are given by:

4 % 4 % 2 %2 = 64
i.e. 64 GFLOPS (double precision float point)

Here we have assumed two double precision floating point

numbers per clock cycle. For single precision, we need to

double the number i.e. 128 GFLOPS (single precision float

point). For GPU GFLOPS, we have similarly:

0.863 % 2304 % 2 = 3977

i.e. 3977 GFLOPS (single precision floating point)

Based on these values, the estimated Speedup and peak

performance between the CPU and GPU implementations

should be in the region of 31.3x. Of course, this value is very

subjective and reliant on numerous other factors, such as

correct code optimisation, full usage of MAD instructions,

efficient use of memory, etc. and therefore should only be used

as a guideline.

3.3. The CUDA Programming Framework

For some time the usual method for improving performance

on the CPU was to simply increase the processor clock speed.

Since then, high performance computing has provided

dramatic improvements in computational efficiency by

gradually increasing the number of processor cores. Indeed,

the majority of computers today have at least four or more

cores per die allowing multicore processing capabilities and

parallel implementations effortlessly. In a similar

development driven path, early GPUs were initially designed

for producing colour texture coordinates matching pixels on

the screen using a programmable arithmetic unit knows as a

pixel shader. Since the arithmetic being performed on the

input colours and textures was completely controlled by the

programmer, it was soon realised that these input ‘colours’

could effectively be any data type. If the inputs were

considered numerical data, the pixel shaders could be

programmed to perform arbitrary computations on this other

type of data. The new compute unified device architecture

(CUDA) developed by Nvidia completely revolutionised

computation on the GPU. The CUDA programming

framework included a unified shader pipeline that allows each

arithmetic logic unit (ALU) on the processor to be marshalled

by a program intending to perform general-purpose

computations (see Figure 2).

GPU-accelerated applications run the sequential part of

their workload on the CPU, which is optimised for

single-threaded performance, while accelerating parallel

processing on the GPU. However, since the GPU is a

coprocessor usually on a separate PCI-express card, data must

first be explicitly copied from the system memory to global

memory on the GPU. For this reason, performance bottlenecks

are often minimised by making intelligent use of memory

bandwidth. Despite these drawbacks, GPUs are an extremely

viable candidate for performing highly intensive computations

that exhibit high levels of parallelism.

Figure 2. A schematic of the CPU vs. GPU architecture [11].

3.3.1. Threads, Blocks, Grids and Memory

Figure 3. Schematic of the arrangement of threads, blocks, and grids between

the host and device [11].

The CUDA programming framework provides an API for

programmers that exposes the underlying GPU architecture,

which is a collection of single instruction, multiple data

(SIMD) processors capable of switching between thousands

of threads. CUDA further extends C by allowing the

programmer to define C functions known as kernels, that are

executed N times concurrently by N different CUDA threads.

 Computational Biology and Bioinformatics 2015; 3(5): 65-73 71

A kernel is defined using the __global__ declaration specifier

and the number of CUDA threads that execute the kernel is

specified using a <<<GRIDSIZE, BLOCKSIZE>>>

execution configuration syntax. Each thread that executes the

kernel is given a unique thread id that is accessible within the

kernel through the threadIdx variable. In CUDA, the threads

are grouped into blocks and the blocks are grouped into grids

(see Figure 3). There is a limit to the number of threads per

block, on current GPUs, a thread block may contain up to

1,024 threads. A thread block size of 256 threads, although

arbitrary, is a common choice [11].

Figure 4. Schematic of the arrangement of memory within grids and blocks

[11].

Threads within a block can cooperate by sharing data

through shared memory and by synchronising their execution

to coordinate memory access. More precisely, one can specify

synchronisation points in the kernel by calling the

__syncthreads() function [11]. Indeed, CUDA makes

available several different types of accessible memory options.

For instance, one very practical type of memory is constant

memory. Constant memory is used for data that will not

change during the execution of a kernel and in some situations

can reduced memory bandwidth. CUDA also provides access

to shared memory. With this type of memory it is possible to

modify variables resident in the shared memory. CUDA treats

variables in shared memory differently to standard variables.

That is, CUDA creates copy of the variables for each block it

launches on the GPU and thereby allows every thread in that

block shared access to the memory. This is extremely useful

since a major drawback of current GPU vs. CPU

implementations is the need to continually transfer data

between host and device. The correct usage of shared memory

along with synchronisation can greatly alleviate some of these

efficiency problems. Also, threads cannot see or modify the

copied variable that can be seen in the other blocks and so

provides a favourable mechanism by which threads within a

block can communicate and collaborate on workloads.

Furthermore, shared memory buffers reside physically on the

GPU thereby greatly improving the latency of access and

per-block programmable management cache. Other types of

available memory include global memory; the slowest of the

memory available but the largest in size, and texture memory

(see Figure 4).

3.3.2. The C and CUDA Implementations

Algorithm 1. C implementation for the EFD scheme.

1: Define model parameters

2: Declare pointers

3: Initialise array memory

4: Set initial conditions

5: Start clock()

6: for n = 1:Nt do

7: for j = 1:Nx do

8: Update nodes �-./), 	-./),
-./), �-./)

9: end for

10: end for

11: End clock()

12: Print results

13: Free memory

The CUDA programming model requires that arrays use a

single contiguous block of linear memory. So, rather than

declaring a 2D array in C, we use a single linear block of

memory and reference it as if it were a 2D array using the C

calloc function. calloc also initialises all elements to zero and

subsequently returns a null pointer if it cannot allocate a linear

block of adequate size. The algorithm developed to implement

the C program for the EFD scheme is shown in Algorithm 1.

Moving from C to CUDA requires additional coding, as

well as some manipulation of the kernel. Note that under the

CUDA programming framework, we refer to the CPU as the

host and the GPU as the device. With CUDA, code is required

to initialise memory on the device, and to deal with the

transfers of data to the device and back to the host after the

kernel execution has completed. Basically, there are three

steps that are essential to the successfully execution of a kernel

on the GPU. Firstly, data must initialised and transferred from

the host to the device global memory. Once the data is on the

GPU, the kernel is executed N times and launches the required

number of N threads for the device. When all threads have

completed execution, enforced through synchronisation, data

is then be transferred back to the host from the device. In the

CUDA programming model, device memory is typically

allocated using cudaMalloc()and data is transferred between

host and device memory using cudaMemcpy depending on the

data flow i.e. either cudaMemcpyHostToDevice or

cudaMemcpyDeviceToHost. Memory is subsequently freed

after completion using cudaFree(). As already mentioned,

72 Paul M. Darbyshire: A System of Coupled Nonlinear Partial Differential Equations Describing Avascular Tumour

Growth Are Solved Numerically Using Parallel Programming to Assess Computational Speedup

each block of threads has access to shared memory. Making

the correct use of this memory can reduce the amount of data

that has to be transferred from global memory, which is

typically the performance bottleneck in many GPU vs. CPU

algorithms [11]. The algorithm for the implementation of the

CUDA kernel for the EFD scheme is shown in Algorithm 2.

Algorithm 2. CUDA kernel for the EFD scheme.

1: Get current thread index

2: if (i<N) then

3: Update nodes �-./), 	-./),
-./), �-./)

4: end if

5: Synchronise threads

Algorithm 3 shows the main CUDA implementation for the

EFD scheme.

Algorithm 3. CUDA main implementation for the EFD scheme.

1: Define model parameters

2: Declare host and device pointers

3: Allocate host and device memory

4: Set initial conditions

5: Copy host arrays to device

6: Declare GRIDSIZE and BLOCKSIZE

7: Start clock()

8: for n = 1:Nt do

9: for j = 1:Nx do

10: Launch kernel<<<GRIDSIZE,BLOCKSIZE,>>>

11: end for

12: Synchronise threads

13: end for

14: End clock()

15: Copy device arrays to host

16: Print results

17: Free memory

4. Results and Discussion

Table 3 shows the execution time for the C and CUDA

implementations EFD scheme solution to Model 1.

Table 3. Performance results for C and CUDA implementations and

subsequent Speedup of CUDA over C.

Iterations Speedup

100,000 1.03

500,000 1.63

1,000,000 3.04

5,000,000 22.5

10,000,000 29.2

Table 3 shows that at low iterations there is practically no

difference between the implementations in C or CUDA. In

fact, this is entirely what we would expect since the power of

the GPU does not show itself unless it is sharing the majority

of the workload and handling millions (and billions) of

calculations. Indeed, at such low iterations the bottleneck

between transferring data between the host and device global

memory clearly hinders any computational improvement in

performance. However, when considering iterations in the

several millions, CUDA far outstrips C in execution time and

efficiency. Indeed, the GPU showed a Speedup of an average

25.9x that of the sequential C implementation and very close

to that of the estimated peak performance of 31.3x Speedup

based on the GFLOPS calculation.

Whilst we only considered a 1D implementation, we have

shown that the CUDA programming framework can be

extremely valuable in dramatically increasing execution time

and efficiency. Moreover, when challenged with more

complex systems of coupled nonlinear PDEs, for example in

studying the processes of angiogenesis in breast cancer or

vascular brain tumours, the need for parallel algorithms is

essential. Indeed, it is assumed that the implementation of

more advanced numerical schemes, that can be considered

massively parallel, will provide an extremely productive

computational methodology. The authors have already begun

implementing more complex 2D and 3D numerical solutions

on the CUDA programming framework with very promising

initial results. Moreover, greater biological insight and clinical

knowledge can be gained from such implementations.

5. Conclusions

Obtaining a numerical solution to a system of coupled

nonlinear PDEs can be a daunting computational task, even in

1D. The aim of this paper was to show that a numerical

solution to a system of coupled nonlinear PDEs, such as those

frequently encountered in computational biology, could

benefit from parallelisation. A suitable platform was shown to

be Nvidia’s CUDA programming framework which

substantially improved computational efficiency and

execution time in a 1D implementation of an EFD scheme,

returning Speedups around 26x that of conventional

methodologies.

The modelling of avascular tumours is often seen as a first

step towards the development of more complex models of

later stage tumour growth, such as angiogenesis and

vascularisation. Mathematical and computational modelling is

playing an increasingly important role in helping biomedical

researchers in understanding the different aspects of solid

tumour dynamics. In-silico experiments and simulations, such

as those performed in this paper, give researchers, clinicians

and oncologists the tools and opportunity to observe effects of

different treatments on cancerous cells in realistic time frames.

This will inevitably lead to more rapid improvements in

effectual therapeutic strategies as well as aiding in the

discovery of new forms of treatment. Personalised healthcare,

adapted to patient specific symptoms, could be used in therapy

planning by suggesting irradiation regions adapted to growth

dynamics or optimal temporal distribution of chemotherapy

through computer simulation. In fact, getting new

chemotherapy and other anti-cancer drugs into pre-clinical

trials is relying more and more on supportive evidence from -

in-silico experiments. The ability to use advanced

computational methods to simulate the virtual stages of

pre-clinical trials greatly reduces time to market and

laboratory resources. If we consider the billions of dollars

spent on cancer research and that lost in unnecessary and time

 Computational Biology and Bioinformatics 2015; 3(5): 65-73 73

consuming clinical trials, the case for in-silico experiments

that make use of advancements in computational technology,

is a first port of call for any research establishment or

pharmaceutical company dedicated to fighting diseases such

as cancer.

References

[1] Araujo, R. and McElwain, D. A history of the study of solid
tumor growth: the contribution of mathematical modelling.
Bulletin of Mathematical Biology, 66. 2004.

[2] Sutherland, R.M. and Durand, R. E. Growth and cellular
characteristics of multicell spheroids. Recent Results in Cancer
Research 95, 24-49. 1984.

[3] Sutherland, R. M., Sordat, B., Bamat, J., Gabbert, H., Bourrat,
B., Mueller-Klieser,W. Oxygenation and differentiation in
multicellular spheroids of human colon carcinoma. Cancer
Research, Vol. 46, 5320–5329. 1986.

[4] Sutherland, R. M. Cell and environment interaction in tumour
microregions: the multicell spheroid model. Science, Vol. 240,
177-184. 1988.

[5] Freyer, J. P. and Schor, P. L. Regrowth of cells from multicell
tumour spheroids. Cell and Tissue Kinetics, 20, 249. 1987.

[6] Orme, M. and Chaplain M.A.J. A mathematical model of
vascular tumor growth and invasion. Mathematical and
Computational Modelling, 23. 1996.

[7] Sherratt, J. A. Wave front propagation in a competition
equation with a new motility term modelling contact inhibition
between cell populations. Proceedings of the Royal Society of
London, A456, 2365–2386. 2000.

[8] Sherratt, J. A and Chaplain M.A.J. A new mathematical model
for avascular tumour growth. Journal of Mathematical Biology,
Vol. 43, pp291–312. 2001.

[9] Huttenlocher, A., Lakonishok, M., Kinder, M., Wu, S., Truong,
T., Knudsen, K. A. and Horwitz, A. F. Integrin and cadherin
synergy regulates contact inhibition of migration and motile
activity. Journal of Cell Biology 141, 515-526. 1998.

[10] McElwain, D. L. S. and Pettet, G. J. Cell migration in multicell
spheroids: swimming against the tide. Bulletin of Mathematical
Biology, 55, 655–674. 1993.

[11] Nvidia Corporation. CUDA C programming guide. Version 6.0.
2014.

[12] Amdahl, G. M. Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities. AFIPS
Conference Proceedings (30): 483–485. 1967.

