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Abstract: In recent years, a large number of proteins of different organisms have been discovered but due to high 
experimental cost and uncertain time boundary, yet it is not possible to find out all of the functionalities of those proteins. With 
the recent advent of huge protein-protein interactions, it becomes an opportunity to computationally predict a protein’s 
functionality based on its interacting partners. In this work, we mainly try to find out a way by which we can predict 
functionality of a target protein with low computational complexity. We propose a simple approach for protein function 
prediction based on Classical Neighbor Counting method. We also investigate the functional dependency of a protein to its 
direct neighbors in the interaction network. We find that when majority of its interacting partners have more experimentally 
known annotation, then more accurately we can predict a protein’s functionality using Neighbor Counting technique. 
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1. Introduction 

Discovering the functions of proteins in living Organism is 
essential to understand our life at a molecular level. Though 
Protein sequences have been published at a dramatic rate but 
a large fraction of newly discovered proteins have no 
experimentally validated functional annotation. 

Experimentally determination of protein function is 
expensive, time consuming and some experiments cannot be 
performed in some organisms for a variety of biological or 
ethical reasons. So, successful computational predictive 
methods have an important role to play in this regard. 
Besides computational function prediction can also be used 
to formulate biological hypotheses and guide wet lab 
experiments through prioritization. 

Several Computational techniques have been developed 
that can be used to predict protein function including 
analyzing gene expression pattern [1-2], phylogenetic 
profiles [3-4], protein sequences [5-6], and protein structures 

[7-8]. In case of protein function prediction by analyzing 
gene expression pattern, it is considered that co-expressed 
proteins may have related functions. In case of analyzing 
phylogenetic profile, evolutionary history of proteins is used 
for inferring functionality to unannotated protein. In case of 
protein function prediction using protein sequence, sequence 
similarity measures, homologies are primarily used. In case 
of function prediction using protein structure, structural 
alignment may be used; even they differ in their sequence 
data. In [9-10], authors also discuss about other methods of 
computational function prediction. Each of these approaches 
has achieved some success in some particular case, but in 
general, yet they cannot be reliably used to predict proteins 
functionality. 

Since availability of protein-protein interaction data is 
increasing and proteins interact with each other for a 
common purpose, so a protein’s functionality may be 
predicted based on the functionality of its interacting 
neighbors. 

Several attempts have already been taken to predict the 
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protein’s functionality using its interaction network. In [11], 
authors tried to predict the functionality of an un-annotated 
protein directly from its neighbors. In [12], authors use χ2 

statistics by looking at all proteins within a specified radius, 
though it doesn’t take into account the underlying topology 
of the PPI network. In [13], authors introduce a new metric 
based on a graph diffusion property to transfer function to 
unannotated protein from already annotated interacting 
partners. 

In this work, we propose an approach based on neighbor’s 
functional frequency count with dynamic threshold to 
annotate a target protein and investigate the influence of 
direct neighbors for assigning function to an un-annotated 
protein. 

2. Materials and Methods 

2.1. Datasets 

We have used the molecular interactions of Saccharomyces 

cerevisiae from the BioGrid database [14] (release November 
2014, version 3.2.118). We have collected the annotation 
dataset for Saccharomyces cerevisiae from Gene Ontology 
Consortium [15] (release November 2014).  We have 
considered only physical interactions and have discarded 
those physical interactions which are solely based on high-
throughput Yeast Two-hybrid and Protein-RNA assays. We 
have filtered out the Y2H high throughput assay because they 
are inherently error prone. We have filtered out Protein-RNA 
interactions because our main focus was only on the protein’s 
functionality prediction. Initially there were 139693 raw 
physical interactions. Since we have to verify our prediction, 
we have kept only those interactions in which interactors are 
already annotated.  

As like [16], we have also filtered out proteins that are 
annotated either by electronic means or have ambiguity in the 
evidence used to annotate the proteins. We have included 
only those proteins annotated with experimental evidence 
codes IDA, IEP, IGI, IMP, IPI, RGA and TAS. We have done 
this to avoid the uncertainty of misannotation in public 
protein database. In [17], authors show that there exits lots of 
misannotation in pubic protein databases when considering 
only computational annotation techniques. In our prepared 
datasets, there were 48835 Non-Redundant Interactions 
between 3594 unique annotated proteins. 

2.2. Proposed Algorithm 

We propose an approach for assigning function to an un-
annotated protein based on its neighbor’s functional 
annotation’s frequency. Actually it’s a modification of 
Classical Neighbor Counting method [11, 18]. The main 
concept of our approach is based on the fact that the 
functionalities shown by more neighbors have likely to be 
shown also by the target proteins and this likeliness varies 
with the target protein and its respective annotated neighbors. 

For each target protein p in the interaction network, each 
function fi  F is given a score based on the frequency of its ϵ

occurrence in the direct neighbors of p, where F is the set of 
functionalities shown by all neighbors of p. The functions 
having a minimum threshold frequency are assigned to the 
target protein. This minimum threshold frequency is 
adjustable for each target protein. 

Scoring Function, 

��(�) = ∑ �(	, �)�
��   

Where, 
(n, f) = 1 if neighbor n has function f, 0 otherwise; 
Np refers to the set of direct interacting neighbors of 

protein p. 
Threshold, 

�ℎ =  ���� ; �� max ���(�)� ≥  ���max ���(�)� ; ��ℎ !"�# $  
Where,  
ith denotes the initial threshold; 
Th denotes the threshold, adjusted after score calculation. 

2.3. Assessment of Algorithms 

In our used Interaction dataset of Saccharomyces 

cerevisiae, many annotations are of low frequency, many 
proteins are not well annotated; even many proteins are still 
un-annotated. From Fig. 1, we see that most of the proteins 
have only 2 or 3 known functions i.e. GO annotation id. 
Other proteins have small numbers of known functions. In 
this situation, we discard completely un-annotated proteins 
from our test dataset and use leave-one-out method to 
evaluate predictions performed by both Classical Neighbor 
Counting (CNC) and Neighbor Counting with Dynamic 
Threshold method (NCDT). In our case, a target protein is 
held out (i.e. its annotations are considered unknown) and a 
prediction is computed using the rest of the annotation 
information in the network as like [19]. 

We have observed that a significant number of proteins of 
Saccharomyces cerevisiae perform several functions, and 
hence have multiple annotations. Hence, annotation 
prediction for a protein is a multi-label classification problem 
and prediction for a protein is a set of annotations. Therefore, 
the prediction can be fully correct, partially correct (with 
different levels of correctness) or fully incorrect. To facilitate 
all the cases, we use Precision and Recall as performance 
measure besides Accuracy calculation using the following 
definitions presented in [20]. 

Accuracy (A): Accuracy for each target protein is defined 
as the proportion of the predicted correct annotations to the 
total number (predicted and actual) of annotations for that 
protein. Overall accuracy is the average across all target 
proteins. 

%&&'!(&), % =  *� ∑ |,- ∩ /- ||,- ∪ /- |�12*   

Precision (P): Precision is the proportion of predicted 
correct annotations to the total number of actual annotations, 
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averaged over all target proteins. 
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Recall (R): Recall is the proportion of predicted correct 
annotations to the total number of predicted annotations, 
averaged over all target proteins. 
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Where, Y is the set of predicted annotations for a target 
protein, Z is the set of actual annotations for a target protein, 
and n is the total number of target proteins. 

In addition, majority of the proteins interact with around 1 
to 30 proteins directly in our filtered interaction network.
Some of the proteins directly interact with large number of 
other proteins, but this type of proteins is
considered protein-protein interaction network
the predicted result for 1 to 15 threshold level.
will be able to predict the functionality of thos
we have to initiate the initial threshold level accordingly
better prediction performance. 

Fig. 1 Distribution of known functions of interacting proteins in

interaction network of BioGRID Dataset v3.2.118 

3. Results and Discussion 

We have implemented both Classical Neighbor
(CNC) [11] and our proposed Neighbor
Dynamic Threshold (NCDT) methods in MatL
tested them on Saccharomyces cerevisiae

interaction dataset for molecular functional aspects
from BioGRID database. In all cases, we have
exact match for gene ontology annotation like [13

The results show that adding Dynamic Threshold
improves the performance of Classic Neighbor
method for protein function prediction (Fig. 2
4). In our prepared dataset of Saccharomyces cerevisiae

Classical Neighbor Counting considers most of the
annotations of neighboring proteins as negative
test proteins in higher degree of majority count
the other hand, from Fig. 6, we observe that

Computational Biology and Bioinformatics 2015; 3(1): 1-5  
 

 /- |

 |
   

is the proportion of predicted correct 
annotations to the total number of predicted annotations, 

- |  

nnotations for a target 
annotations for a target protein, 

 
In addition, majority of the proteins interact with around 1 

to 30 proteins directly in our filtered interaction network. 
nteract with large number of 

this type of proteins is low in our 
protein interaction network. So we show 

the predicted result for 1 to 15 threshold level. Our approach 
will be able to predict the functionality of those proteins but 
we have to initiate the initial threshold level accordingly for 

 

of known functions of interacting proteins in our filtered 

Neighbor Counting 
Neighbor Counting with 

methods in MatLab and have 
Saccharomyces cerevisiae’s filtered 

functional aspects collected 
have considered the 
like [13]. 

Dynamic Threshold option 
Neighbor Counting 

(Fig. 2, Fig. 3 and Fig. 
Saccharomyces cerevisiae, 
considers most of the 

s of neighboring proteins as negative for lots of 
higher degree of majority count (Fig. 5). On 

that NCDT balance 

the ratio of the percentage of correct positive predictions and 
the percentage of positive annotation retrieved
actual functionalities of the test protein

In addition, we are more interested in predicting True 
Positive and False Positive annotation
and False Negative annotations.
possible functionality and high 
them, characterizing a protein
more feasible compared to using negative ones.

From Fig. 6, we see that our approach can be easily used to 
predict the possible functionalities 
functionalities may be verified in 
experiment. We also see that when majority of a test protein’s
interacting partners have more experimentally known 
annotation, then more accurately we can predict a protein’s 
functionality using neighbor counting technique

Besides, Functional annotations for the proteins of most 
organisms including Saccharomyces cerevisiae

incomplete at present. Not only that, interaction network of 
different organisms becomes more visible continuously by 
wet lab experiment. Therefore,
identified as false positive (predicted as a function of the 
target protein but that is actually not part of the target 
protein’s annotation), may have a chance that will be 
experimentally verified in future.

To predict the functionality of an unannotated protein
using Neighbor Counting with Dynamic Threshold
to perform around N * GN operation for scoring G
GO annotation ID of N interacting proteins and additional 
one constant operation for threshold level ad
very low computational cost for predicting functionality
protein by considering the interacting proteins b
least we have to evaluate the functionalities
neighbor proteins. Though our approach takes a little more 
computation time but it is ignorable because of its higher 
prediction performance comparing Classical Neighbor 
Counting. 

Fig. 2 Status of Accuracy in Neighbor

(NCDT) and Classical Neighbor Counting

threshold level (Initial Threshold for NCDT)

 3 

the ratio of the percentage of correct positive predictions and 
annotation retrieved among the 

test proteins. 
we are more interested in predicting True 

Positive and False Positive annotations than True Negative 
and False Negative annotations. Because of the large space of 

high experimental cost to verify 
characterizing a protein using positive predictions is 

more feasible compared to using negative ones.   
, we see that our approach can be easily used to 

functionalities of a target protein, those 
be verified in future by wet-lab 

that when majority of a test protein’s 
interacting partners have more experimentally known 
annotation, then more accurately we can predict a protein’s 

ounting technique. 
Besides, Functional annotations for the proteins of most 

Saccharomyces cerevisiae are 
incomplete at present. Not only that, interaction network of 
different organisms becomes more visible continuously by 
wet lab experiment. Therefore, annotations that are currently 
identified as false positive (predicted as a function of the 
target protein but that is actually not part of the target 
protein’s annotation), may have a chance that will be 
experimentally verified in future. 

functionality of an unannotated protein 
using Neighbor Counting with Dynamic Threshold, we have 

operation for scoring GN unique 
ID of N interacting proteins and additional 

one constant operation for threshold level adjustment. This is 
very low computational cost for predicting functionality of a 

dering the interacting proteins because at 
the functionalities of all the 

Though our approach takes a little more 
computation time but it is ignorable because of its higher 
prediction performance comparing Classical Neighbor 

 

Neighbor Counting with Dynamic Threshold 

Counting (CNC) with respect to different 

(Initial Threshold for NCDT) 
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Fig. 3 Status of Precision in Neighbor Counting with Dynamic Threshold 

(NCDT) and Classical Neighbor Counting (CNC) with respect to different 

threshold level (Initial Threshold for NCDT) 

 

Fig. 4 Status of Recall in Neighbor Counting with Dynamic Threshold 

(NCDT) and Classical Neighbor Counting (CNC) with respect to different 

threshold level (Initial Threshold for NCDT) 

 

Fig. 5 Precision and Recall results for the Classical Neighbor Counting 

(CNC) on filtered Saccharomyces cerevisiae dataset 

 

Fig. 6 Precision and Recall results for the Neighbor Counting with Dynamic 

Threshold (NCDT) on filtered Saccharomyces cerevisiae dataset 

4. Conclusion and Future Work 

In this work, we propose a computationally simple 
approach for protein function prediction by exploiting the 
fact that, proteins interacts with each other for a common 
purpose and therefore functionality of any interacting protein 
can be predicted from its interacting partners. Basically it’s 
an enhancement to the Classical Neighbor Counting method. 
Our approach takes into account the possibility that if any 
functionality appears in a certain number of neighbors or 
more, then the probability of showing that functionality by 
the target protein is higher and this number changes with the 
number of interacting proteins and their verified annotations. 

We have tested our proposed approach and Classical 
Neighbor Counting Method on protein-protein interaction 
dataset of Saccharomyces cerevisiae organism i.e. baker’s 
yeast using the leave-one-out cross-validation. Results show 
that our approach outperforms the Classical Neighbor 

Counting methods for prediction of protein functions. In 
addition, we have observed that, to predict possible 
functionality of a target protein based only on the direct 
neighbors, more interacting partners with their more 
experimentally known functionality is beneficial. 

Finally it is noted that to improve the reliability of the 
function prediction, we must consider the annotation states of 
a function in the whole interaction network and indirect 
interaction of a protein with others, not only direct neighbors 
in addition to adjustable threshold level of function 
assignment. 
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