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Abstract: Ecological data matrices often require some form of pre-processing so that any undesirable effects (e.g. the 
variable size effect) may be removed from multivariate analyses. This paper describes hypercorrelation, a simple data 
transformation that improves ordination methods significantly. Hypercorrelated matrices efficiently eliminate the ‘arch’ (or 
Guttman) effect, a spurious polynomial relation between ordination axes. These matrices reduce the sensitivity of 
correspondence analysis to outliers. Canonical analyses (canonical correspondence analysis and redundancy analysis) of 
hypercorrelated matrices are resistant to undesirable effects of missing data. Finally, the hypercorrelation extends 
applicability of “linear ordination method” (principal components analysis and  redundancy analysis) to sparse (high beta 
diversity) matrices. 
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1. Introduction 

Correspondence analysis (CA) and principal components 
analysis (PCA) with their canonical forms are the most 
frequently used ordination methods in ecology [1-6]. 

A spurious polynomial relation between ordination axes 
(the arch effect or Guttman effect) is a well-known 
drawback of CA and PCA. Compared to CA, PCA is more 
sensitive to the arch effect, especially in the case when beta 
diversity (species turnover) along spatial or environmental 
gradients is high. Therefore, the principal components 
analysis and its canonical variant (redundancy analysis) are 
inappropriate for analyses of long environmental gradients. 

Sensitivity to ‘outliers’ is another fault of CA [1-6]. 
Application of CA to matrices with sparse vectors often 
produces uninterpretable results. In such cases, CA 
highlights the importance of outliers (sparse vectors), 
obscuring the remaining data variability. 

Application of canonical correspondence analysis (CCA) 
and redundancy analysis (RDA) to matrices with missing 
data may produce quite distorted and ecologically 
uninterpretable results. 

In this article, we propose a simple solution for these 

problems. The solution is based on hypercorrelated matrices. 
Comparative tests with simulated data revealed that 
hypercorrelated matrices significantly improve the 
performance of (canonical) correspondence analysis, PCA 
and RDA. 

2. Decorrelated and Hypercorrelated 

Matrices 

Suppose that X(nxm) is a matrix that describes the 
distribution of n species in m sites. The matrix specifies the 
position of m points in n-dimensional Euclidean space. The 
axes of referent space are mutually orthogonal, but not 
necessarily independent. We may assess the statistical 
dependence between two variables using either squared or 
absolute value of Pearson correlation coefficient. Both 
quantities may vary from 0 (if two variables are statistically 
independent) to 1 (if two variables are linearly dependent 
and perfectly correlated). 

We may either eliminate or increase linear dependence 
between rows of X. Decorrelation and hypercorrelation, two 
opposite processes that reduce and increase statistical 
dependence between variables, may be performed using 
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simple transformations of data matrices. 
The Mahalanobis transformation  

M=(XXT)-0.5                (1) 

decorrelates variables that constitute the basis of 
n-dimensional Euclidean space. After this transformation, 
the correlation between each pair of axes (each pair of 
species) is reduced to zero. 

The hypercorrelated matrix  X’=XX
T
X increases 

statistical (linear) dependence between variables. It is easy 
to prove this regularity. The factorization of X by the 
singular value decomposition (SVD) gives: 

X=PΣΣΣΣQT                   (2) 

where P and Q are orthogonal matrices and ΣΣΣΣ=diag(σσσσ) is the 
matrix of singular values. Therefore, 

XXTX=( PΣΣΣΣQT) QΣΣΣΣPT( PΣΣΣΣQT)= PΣΣΣΣ3QT        (3) 

because P
T
P=In and Q

T
Q=Im. Since σ1>σ2>...>σr, it is 

obvious that σ1
3>>σ2

3>>...>>σr
3, r=min(m,n). This 

relationship indicates that hypercorrelated matrices elongate 
multidimensional ellipsoids. If σ1>>σ2 (e.g. if σ1/σ2>4), 
then hypercorrelation transforms multidimensional 
ellipsoids into multidimensional lines (Fig.1). In that case, 
all rows of the hypercorrelated matrix X’ are linearly 
dependent and perfectly correlated.  

 

Fig 1. Mathematical operations that alter the linear dependence between 

rows (columns) of data matrices. a) Graphical equivalent of a data matrix X. 

b) The Mahalanobis transformation decorrelates variables. c) The 

hypercorrelated matrix  increases statistical ( linear) dependence between 

variables.  

2.1. Ecological Interpretation and Properties of 

Hypercorrelated Matrices 

The ecological meaning of X’=XX
T
X is hidden. However, 

the hypercorrelated matrix may be represented using an 
alternative equation:  

X’=XS                  (4) 

where S=X
T
X is the mxm-dimensional similarity matrix 

containing information on floristic (or faunistic) similarity 
between pairs of sites. Above equation clearly indicates that 
the hypercorrelated matrix is specifically transformed 
species-by-sites matrix. The most important effects of this 

transformation involve a selective reduction of data 
variability and the elimination of zeroes from data matrices. 

The selective reduction of data variability is an unique 
and very useful property of hypercorrelated matrices. The 
hypercorrelation does not affect the main data variability 
that is associated with first principal axis. The variability 
reduction gradually increases with decreasing importance of 
principal axes. This regularity may be proved easily. The 
matrix X=QΣΣΣΣP

T of rank r may be represented as the sum of r 
matrices: 

r
T

i i i
i 1

X p q
=

= σ∑               (5) 

where for each i=1,…,r  the singular value σi, and 
corresponding singular vectors pi and qi

T satisfy the 
condition piX=σiqi

T [7]. Similarly, the matrix X=QΣΣΣΣ3
P

T may 
be represented as the sum of r matrices: 

r
2 T
1 i i i i

i 1

X' a p q
=

 = σ σ 
 
∑           (6) 

where ai=σi
2/σ1

2. The matrices X and X’ are closely related. 
They differ with respect to the scaling factor σ1

2 and the 
weighting coefficients ai. The multidimensional 
configuration of rows (columns) of a data matrix remains 
unaltered if we multiply the matrix by a scalar. Therefore, 
the scaling factor σ1

2  has no impact on data variability. On 
the other hand, the weighting coefficients ai have profound 
effects on variability patterns. We may assume that all 
weighting coefficients in X are the same (a1=a2=...= ar=1). 
Starting from a1=1, the weighting coefficients of the 
hypercorrelated matrix subsequently decrease, gradually 
reducing total data variability. The selective reduction of 
data variability is very important because it may contribute 
to a reduction of the ‘arch effect’.  

Since 

∑
=

=
m

h

jhhiji sxx
1

,,,'            (7) 

it is obvious that 
jiji xx ,,' ≥ . This relation indicates that the 

hypercorrelation may eliminate zero values from sparse 

matrices. Suppose that a species is unrecorded in a site 
( 0, =jix ). The corresponding 

jix ,'  will be greater than zero 

if the species is present in another site, and if these two sites 
share at least one species. Since hypercorrelated matrices 
eliminate zeros from sparse vectors, they may reduce the 
sensitivity of CA to rare categories. Moreover, the 
elimination of zeroes may reduce the sensitivity of “linear 
ordination methods” to the effects of long gradients.  

2.2. Singular Vectors of Hypercorrelated Matrices 

Matrices X and X’ share the same set of singular vectors. 
Therefore, principal component analyses of X and X’ 
produce trivial results that differ only with respect to 
singular values. We may avoid the trivial solution if we 
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perform a data transformation of these matrices. Suppose, 
for example, that we performed centering of X and X’. 
Resulting matrices Xc and Xc’ have different sets of singular 
vectors since Xc’≠ XcXc

T
Xc. Any transformation applied to 

the matrices X and X’ assures that singular vectors of 
transformed matrices are different. 

 

Fig 2. Using a coenocline model (a), we created a data matrix that 

describes the distribution of 30 species in 20 sites. Sites (squares) are 

linearly distributed along a single environmental gradient. b) 

Correspondence analysis (CA) and principal components analysis (PCA) 

represented the sites as an arch-shaped, rather than a linear sequence of 

points. c) Applying CA and PCA to the hypercorrelated matrix, we obtained 

almost ideal results.  

3. Methods 

We evaluated the effects of hypercorrelated matrices on 
different ordination methods using the simulated data, 
derived from explicit models of community variation along 
environmental gradients. The use of simulated data in 
comparative tests has apparent advantage since the 
ordination performance may be assessed by comparing 
ordination configurations with the configuration of samples 
in the simulated environmental space [8]. 

Artificial species-by-sites matrices may be created using a 
wide spectrum of ecological models [9-11]. Using either 
univariate Gaussian curves or bivariate Gaussian surfaces to 
simulate distribution (response) of species along one or two 
independent environmental gradients, we created a set of 
data matrices. Sites were positioned at regular intervals 
along the environmental gradients. Modal coordinates of 

species (species optima) were randomly distributed on the 
gradients. The β  diversity along simulated gradients 

(expressed in Half Change-HC units, sensu Gauch & 
Whittaker [12]) varied from 3 to 6 HC. 

We analysed the effects of hypercorrelation on CA, CCA, 
PCA and RDA using the ‘FLORA’ package [13], specifically 
the latest version of the package [14] 

Initial processing of data matrices (e. g. data centering 
and/or data standardization) has essential impact on PCA 
and RDA results [15-19] Most authors [2, 17, 19] 
recommend use of PCA (and RDA) after the Hellinger 
transformation. Following these recommendations, we 
performed PCA and RDA using a stepwise preparation of 
data matrices. The first step involved the Hellinger 
transformation of either simulated matrix X or its 
hypercorrelated equivalent X’. The second step involved 
centering of transformed matrices. We also performed other 
standardization options (e. g. standardizations by site totals, 
Euclidean norm and general norm) instead of the Hellinger 
transformation. Different options produced essentially 
similar results. Therefore we presented only results obtained 
by PCA and RDA of matrices that are preprocessed using the 
Hellinger transformation. 

4. Results 

4.1. Sensitivity to the Arch Effect 

Using a coenocline model (Fig 2a), we created a data 
matrix that describes the distribution of 30 species in 20 sites. 
Despite a low beta diversity (3 HC), CA and PCA produced 
distorted results. These methods represented the sites as an 
arch-shaped, rather than a linear sequence of points (Fig. 2b). 
Applying both methods to the hypercorrelated matrix 
produced almost ideal results. 

Compared to CA, the "linear ordination methods" (PCA, 
principal coordinate analysis and their canonical variants) 
are more sensitive to the arch effect, especially in the case 
when the species turnover along spatial or environmental 
gradients (directional beta diversity sensu Anderson et al. 
[20]) is high. To confirm this regularity we used coenoplanes 
with relatively high species turnover. Using a coenoplane 
model, we generated a data matrix with 77 species and 60 
sites. The sites were distributed in a regular 10x6 grid along 
two independent gradients with high beta diversities (5 x 3 
HC). Applying CA and PCA to the coenoplane, we obtained 
different results. CA generated square instead of rectangular 
pattern of sites (Fig 3a). Nevertheless, CA accurately 
recovered the rank order of samples along simulated 
gradients. PCA, however, severely distorted the planar 
pattern of sites (Fig 3a). The sites that are located at opposite 
ends of environmental gradients have no species in common. 
Therefore, these sites should be maximally separated in 
ordination plane. However, PCA locates these samples in a 
near proximity. Interpretability of such results may be 
questioned. Legendre & Galagher [18] emphasized that the 
Hellinger transformation removes the horseshoe effect of 



Computational Biology and Bioinformatics 2014; 2(4): 57-62  60 
 

PCA. However, our results clearly indicate that the Hellinger 
transformation is not sufficient for removing undesirable 
curvilinear distortion. Applying CA and PCA to the 
hypercorrelated matrix, we obtained more acceptable results 
(Fig 3b). We repeated experiments using the coenoplanes 
with higher beta diversities (e. g. 6x6 HC coenoplanes), and 
found out that PCA of hypercorrelated matrices is resistant 
to the arch distortion. It may be concluded that 
hypercorrelation extends applicability of PCA to matrices 
with long gradients. 

 

Fig 3. CA and PCA of a 5 x 3 half-change coenoplane. a) CA generated a 

square instead of rectangular pattern of sites. Nevertheless, CA accurately 

recovered the rank order of samples along simulated gradients. Due to the 

arch effect, PCA severely distorted the planar pattern of sites. b) Both CA 

and PCA of the hypercorrelated matrix accurately recovered expected 

(known) configuration of sites along simulated gradients.  

4.2. The Rarity Problem 

The application of CA to matrices with sparse vectors 
often produces uninterpretable results. In such cases, CA 
highlights sparse vectors, obscuring the remaining data 
variability. To simulate outliers, we generated an artificial 
130x81 data matrix. We generated the main part of the 
matrix (the 120x80 submatrix), assuming that samples are 
positioned in a regular 10x8 grid along two independent 
gradients. We added ten rare species and one atypical site to 
the main submatrix. Each of the rare species occurs in two 
sites (the atypical site and another, randomly selected site). 
Applying CA to the extended matrix, we obtained quite 
unacceptable results. CA overemphasized the importance of 
outliers. A cluster of overlapping points (Fig. 4) represents 
all the other sites. Such a result is confusing, since a large 
proportion of data variability is hidden.  

Downweighting of rare categories may reduce the 
undesirable effects of outliers [21, 22]. If Fmax is the 
frequency of the most common species, then species rarer 
than Fmax/5 are downweighted in proportion to their 
frequency. We used downweighting of either sites, or species, 
or both sites and species in order to improve CA. However, 

each of the downweighting options failed to eliminate the 
undesirable effect of outliers (Fig. 4).  

Applying CA to the hypercorrelated matrix, we obtained 
more acceptable result. CA of hypercorrelated matrix also 
emphasized the outlier, but contrary to ordinary CA, it 
revealed the latent coenoplane structure (Fig 4d).  

 

Fig 4. The effects of outliers on CA. The data matrix describes the 

distribution of 130 species in 81 sites. Atypical site #81 has 10 rare species. 

a) Amplifying the importance of the atypical site, CA obscured the main 

variability pattern of the coenoplane. Down-weighting of either species (b) 

or both species and sites (c) is unable to improve CA results. d) 

Correspondence analysis of the hypercorrelated matrix successfully 

recovered latent structure of the coenoplane.  

4.3. Canonical Analyses of Hypercorrelated Matrices 

Redundancy analysis [23] and canonical correspondence 
analysis [24] are explanatory methods that may be used for 
testing the null hypothesis of species-environment 
independence. Since these methods operate using two data 
matrices (the ‘response’ data matrix X(nxm), which describes 
the distribution of n species in m sites, and the ‘explanatory’ 
matrix Z(qxm), which contains values of q environmental 
variables in m sites), we may hypercorrelate either the 
‘response’ matrix, or the ‘explanatory’ matrix, or both. In 
order to evaluate these options, we performed a simple test. 

We used the coenocline with 30 species and 20 sites (Fig 
2a) as a response matrix. The ‘explanatory’ matrix consisted 
of 20 variables (one moderately noisy and 19 random 
variables). The moderately noisy variable was generated 
using a stepwise procedure. Firstly, we defined a noiseless 
variable using the site positions along the gradient. The 
noiseless variable was perfectly correlated with community 
samples. Then, we added a small amount of stochastic 
variability to each element of the noiseless variable. Despite 
this randomization procedure, the resulting variable was 
highly correlated with sampling sites (r1=0.96). Another set 
of 19 variables consisted of random numbers. 

The statistical significance of the effect of each variable 
was tested by the Monte Carlo permutation test, using 1000 
randomized runs for each analysis. We revealed that all CCA 
options accurately detected the statistically significant 
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relationship of species with the moderately noisy variable. 
Irrespective of the CCA variant we used, statistical tests 

should have confirmed that species and random variables are 
unrelated. The opposite result is referred to as a type I error. 
Hypercorrelation of either explanatory or both explanatory 
and response data matrices significantly increased the level 
of type I errors. More precisely, in both cases, we always 
obtained erroneous results (Fig. 5). Applying RDA to the 
same data set, we obtained essentially the same result. 

Hypercorrelation of the explanatory matrix increases 
collinearity among environmental variables. Increased 
collinearity among variables may spuriously increase 
statistical importance of a random variable. In such a 
situation, the statistical tests may mislead to wrong 
conclusion about species-environment relationship. To 
avoid this problem, we recommend only hypercorrelating 
the response matrix. 

 

Fig 5. Sensitivity of different CCA variants to type I error. We used the 

coenocline with 30 species and 20 sites (Fig. 2a) as a response matrix. 

Species are unrelated to a set of 19 explanatory variables (variables 2-20), 

since each variable consisted of random numbers. For each random 

variable the probability of the null hypothesis on species-environment 

independence should be greater than a significance limit of 5%. Both CCA 

of untransformed matrices [CCA(X,Z)] and CCA of hypercorrelated 

response matrix [CCA(X’,Z)] accurately detected the statistical 

significance of the species-environment relationship. CCA of 

hypercorrelated explanatory matrix [CCA(X,Z’)] and CCA of 

hypercorrelated response and explanatory matrices [CCA(X’,Z’)] 

produced unacceptable amount of type I errors.  

4.4. The Missing Data Problem 

Both, CCA and RDA produce two kinds of site scores [2, 
25, 26]. Palmer [25] denoted dual site scores of CCA as 
linear combination scores (LC) and weighted averages 
scores (WA). LC site scores are linear combinations of 
environmental variables. WA site scores are weighted 
averages of species scores. The term WA score is 
inappropriate for RDA, since RDA has nothing in common 
with the weighted averaging procedures. The more suitable 
term for dual scores of RDA are linear combination (LC) 
scores and weighted summation (WS) scores.  

The choice of site scores is a controversial topic [25 - 27]. 
The most important consequence of the choice is how the 

ordination reacts to noise [26]. LC scores can be highly 
sensitive to moderate noise in the environmental data. WA 
scores in CCA and WS scores in RDA are insensitive to 
environmental noise. However, as we illustrate in the 
following example, even if we use WA scores in CCA (or 
WS scores in RDA), canonical analyses may produce 
unacceptable results if some of environmental data are 
missing.  

Using the Gaussian surface model, we generated a 
‘response’ matrix with 88 species and 70 sites. Sites were 
distributed in a regular 10x7 grid along two independent 
gradients. The ‘explanatory’ matrix consisted of two 
moderately noisy environmental variables. We deleted 
records of environmental variables in 3 out of 70 sites in 
order to simulate missing data. When performing either 
CCA or RDA to such a modified matrix, we obtained 
unacceptable results. Both WA scores of CCA and WS 
scores of RDA severely distorted regular pattern of sites (Fig. 
6). CCA and RDA of the hypercorrelated response matrix 
successfully recovered the expected (known) configuration 
of sites along the gradients. This indicates that 
hypercorrelated matrices reduce the sensitivity of canonical 
analyses to missing data.  

 

Fig 6. The sensitivity of CCA to missing data. The ‘explanatory’ matrix 

consisted of two moderately noisy environmental variables (ev1 and ev2). 

We deleted records of enivironmental variables in 3 out of 70 sites, in order 

to simulate missing data. a) Both CCA and RDA severely inverted position 

of sites along the environmental gradients.  b) Hypercorrelation of the 

response matrix improved CCA and RDA since both methods accurately 

revealed the expected position of sites.  

5. Conclusion 

Correspondence analysis (CA) and principal components 
analysis (PCA) with their detrended and/or canonical forms 
are the most popular ordination methods in ecology. Due to 
well-known problems that arise because of outliers, long 
gradients or missing data, these methods may produce 
ecologically non-interpretable results. 

Hypercorrelation is a powerful solution of these 
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problems. 
By eliminating zeros from sparse vectors, the 

hypercorrelated matrices reduce the sensitivity of CA to rare 
categories. Compared to ordinary CA, the CA of 
hypercorrelated matrices is more resistant to outliers. 

Moreover, due to reduction of zeroes from sparse matrices, 
the hypercorrelation extends applicability of linear ordination 
methods significantly. Both PCA and RDA of hypercorrelated 
matrices produce ecologically meaningful results, irrespective 
on beta diversity along simulated gradients. 

Canonical analyses are sensitive to missing data. A small 
proportion of missing data may severely distort CCA and 
RDA results. CCA and RDA of hypercorrelated matrices are 
resistant to undesirable effects of missing data. 
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