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Abstract: Many toxic molds synthesize and release an array of poisons, termed mycotoxins that have an enormous impact 

on human health, agriculture and economy [1]. These molds contaminate our buildings, indoor air and crops, cause life 

threatening human and animal diseases and reduce agricultural output [2]. In order to design appropriate approaches to 

minimize the detrimental effects of these fungi, it is essential to develop diagnostic methodologies that can rapidly and 

accurately determine based on fungal strains and their growth patterns, the extent of mycotoxin mediated damage caused to 

the environment.Here we developed a novel multi-scale predictive mathematical model that could reliably estimate aflatoxin 

synthesis from growth features extracted from Aspergillusparasiticus, a well-characterized model for studying mycotoxin 

biosynthesis. We conducted acoustic imaging experiments to observe and extract the growth features from the biomass 

profiles of the growing Aspergillus colony growing on an aflatoxin-inducing solid growth medium. We employed the 

probability-based representation of uncertainty and used Bayes’ theorem to infer the uncertain parameters in our 

mathematical model using biomass observations of the colony at 24h (aflatoxin is not synthesized yet at this time-point) and 

48 hours (aflatoxin synthesis occurs at peak levels). We demonstrate that our model could successfully predict with quantified 

uncertainties the levels of aflatoxin secreted to the environment by the fungus. 

Keywords: Predictive Multi-scale Model, Aflatoxin synthesis, Fungi, Aspergillus, Scanning Acoustic Microscopy, 
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1. Introduction 

A fungal mycelium is composed of tubular 

structurestermed hyphae [3], which continuously branch out 

and find new source of nutrients to ensure growth and 

survival of the cellular colony. By creating hydrostatic 

pressure differences, hyphae advance their frontier [4]. 

Using the process of dichotomous and lateral branching [5], 

hyphae create the mycelial network, in which the older 

branches eventually collides with existing braches and 

annihilated by the process of anastomosis [6]. The nutrients 

are internalized by the hyphae [7-10] and are sent through 

the mycelial network to the area of high nutrient demand, 

using a process called translocation [8,11,12].As hyphae 

propagate, they leave behind a stationary biomass [13]that 

consists of older cells, which are structurally stable and 

promote further growth of the hyphae. Earlier studies with 

mycotoxin producers suggest that mycotoxin production 

promoteshyphal growth and vice-versa. Biomass 

accumulation is positively correlated with mycotoxin 

synthesized and released by the mold[11] becausehyphae 

propagate opposite to the increasing gradient of the 

mycotoxinsand away from the toxigenic cells in the colony, 

a phenomenon described as negative chemotropism [14, 15]. 

Hence, we hypothesized that an accurate mathematical 

model for describe hyphal growth patterns in mycotoxin 

producing mold could successfully predict the levels of 

mycotoxin produced by the colony. In order to be accurate, 

such a model should be able to describe both the hyphal 

growth features (biological scale) and the negative 

chemotropism-driven colony expansion (behavioral scale). 

Hence, we reasoned that only a multi-scale model could 

satisfy such requirements.  

Currently, two distinct mathematical models arepopularly 

used to describe fungal growth: 1) discrete model [15-17], 

where a random model of branching structure is used for 
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hyphal network and is applicable to hyphal scale and 2) 

continuum model, where an extremely complex structure of 

mycelial network is simplified to a biomass density profile 

[18-20] and is applicable to a colony scale. A discrete model 

relies on the stochastic processes of hyphal growth and can 

only describe a small area of interest (hyphal scale). On the 

other hand,a continuum model aims to understand the 

macroscopic behavior of the mycelium; however they do 

notconsider either the multi-scale hyphal interaction orthe 

reverse chemotropism occurring at the meso scale. To 

overcome these limitations, we developed a predictive 

growth model for mycotoxigenic fungi that incorporates the 

co-dependence of their multi-scale nature of growth and 

mycotoxin production. For the current work we used 

Aspergillusparasiticusas our biological model. A radially 

growing A. parasiticuscolony on an agar growth medium is 

shown in Figure 1. The fungus is a well-characterized 

modelfor studying mycotoxin biosynthesis because it 

synthesizes the hepatocarcinogen, aflatoxin that 

contaminates our crops, resulting in billions of dollars 

(~$2.5 billion per year) of loss to agriculture and economy 

[1,2]. 

To develop the predictive model, we have considered two 

continuum models at two different scales and coupled them 

with a systematic uncertainty quantification processes and 

designedthe necessary experiments for model driven data 

collection.To maximize the number of observables during 

data collection for growth, we employed an acoustic 

microscopy based approach that has been developed by us 

recently (manuscript submitted elsewhere) and is especially 

suited for the multi-scale hyphal growth patterns in the most 

minimally invasive way. 

It is obvious that several unknown parameters in the 

model cannot be measured by any means. The values of 

those parameters are also uncertain. Such uncertainties 

could lead to complete erroneous interpretations.To 

circumvent this, uncertainty quantification (UQ) of such 

model parameters wasperformed with Bayesian inference. 

We demonstrate here that after calibration with the feedback 

from real time acoustic imaging data our model successfully 

predicted the spatial and temporal profiles of aflatoxin 

concentrations in an A. parasiticus colony. 

2. Mathematical Formulation 

With uniform nutrient concentration available in all 

directions, A. parasiticus colony grows radially almost 

uniformly in all directions (Figure 1). Hence, we considered 

an axisymmetric problem and analyses were performed only 

along the radial direction [18, 24]. A stationary radial 

biomass with radius R at time t resulting from continuous 

hyphal growth was denoted as (B���, ���. As mentioned 

earlier, the biomass also supports furtherhyphal growth. 

We denoted �
�� 
�⁄ � as the toxin gradient along the 

radius, which motivates the hyphal propagation against the 

aflatoxin gradient and the annihilation of the hyphal tips at 

the meso scale resulting in the mycelial network.We denoted 

the rate of change of biomass equal to the gradient of 

advective flux (Ψ � �� 
�� 
�⁄ ) created by hyphal front 

where � is the hyphal growth velocity. Considering the 

physical phenomena described above,we usedthree coupled 

differential equations. The equation that simulated the local 

scale and themeso-scale behaviors of nutrient uptake by the 

fungal colony is written below: 

���, �� � �� � ����, �� 

 

Figure 1. top) A typical Aspergillusparasiticus colony grown on yeast 

extracted sucrose media after 48 hours, bottom) Normalized biomass 

thickness profile observed from consecutive SAM experiments along the 

black arrow marked in the top image. Biomass is normalized by maximum 

thickness of the colony at the end of 72 hours which is 1256.2µm. 

where, ���, ��  denoted nutrient uptake, ��  denoted the 

initial uniform nutrient concentration, ����, �� denoted the 

remaining nutrient in the colony and� and �, respectively 

denoted the special and temporal independent variables. 

The scale � was considered 100 times smaller than the 

special variable �  in the macro scale. Since nutrient 

absorption occurs at the hyphalscale (by the individual 

hyphae)we considered the nutrient uptake to be a meso scale 

phenomenon, a scale smaller than colony scale by the order 

of 100 (an experimental observation from our imaging 

experiments with Aspergillus colonies). In the colony scale 

the formation of stationary biomass is a dominant 

phenomenon coupled with the synthesis of aflatoxin. Since 

the events at the two scales (nutrient uptake, formation of 
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biomass and aflatoxin synthesis) influence each other, a set 

of coupled differential equations was introduced to capture 

the complete physics. For two different scales the following 

equations wereused to describe the synthesis of the aflatoxin 

in an A. parasiticus colony. 

Lower scale or meso scale equation   

��
�� � ��

���
��� �  ��

�� 
�!    (1) 

Higher scale or macro scale equations  

�� 
�� � �"

��� 
�!� � � �#$

�! % &"�    (2) 

�#$
�� � ��

��#$
�!� % &�'(   (3) 

All the relevant parameters in the equations were coupled 

with their respective proportionality constants. The 

coupling was performed to consider the respective 

influence of the dependent variables in the comprehensive 

phenomena. These parameters cannot be measured by any 

means, using any possible experimental setup. However, 

the biomass can be measured using acoustic imaging. The 

acoustic microscope with varying frequency was capable of 

measuring the ultrasound wave velocity in the fungal 

specimens and from the travel time of the wave between 

the top and the bottom of the colony, the thickness of the 

colony could be determined. The thickness of the colony, a 

radial function of (i.e. the function of � ), is directly 

proportional to the biomass at any special position in the 

colony. From an infinitesimal pixel size at any point (e.g. 

acoustic image pixel) inside the colony in 2D, the local 

thickness of the colony (gives volume) and density of the 

colony could be calculated to get the mass of the colony at 

that pixel point. For our imaging experimentsat specific 

frequency the pixel size is well defined and hence constant. 

Assuming the density of the colony (which is non 

measurable) to be constant, we obtainedthe thickness of the 

colony, the only variable quantity in the biomass density. 

Hence, in the current work, the term “thickness of the 

colony” is used synonymously as “biomass” (B���, ��� , 
the dependent variable. B���, ��  was obtained from 

acoustic imaging experiments and the values (see Figure 1) 

have been used in the current work to calibrate the 

developed model. 

In the equations 1, 2 and 3, two spatial scales, � (meso 

scale) and R  (colony scale) and one time scale tare 

introduced. Scales were further normalized with respect to 

their relevant parameters, λ+, and R+, , where λ+, is the 

wave length of hyphal wave front of the Aspergillus colony 

after 48 hours and is an observable parameter from imaging 

at meso scale and R+, is the radius of the colony after 48 

hours, which is also a measurable quantity from imaging at 

the colony scale. Ifx � r/λ+,andX � R/R+, , considering 

the numerical values of these normalized scales we can say 

1 2⁄ � 105�. All the other parameters were subsequently 

normalized as follows: B�6 � B�/M+, , T96 � T9/T+, , 

U6 � U/�� and t6 � t/48. Here, M+, is the total biomass 

of the colony after 48 hours and T+, is the total aflatoxin 

concentration produced by the colony after 48 hours. Time 

was normalized by 48 hours, since aflatoxin production at 

this time point reaches peak levels. 

Normalizing all the equations (1) – (3) and dropping 

the * from the variables we get following three 

dimensionless coupled differential equations.    

��
�� � >�

���
�?� � @�

�� 
�?    (4) 

�� 
�� � @"

��� 
�?� � A �#$

�? % B"�  (5) 

�#$
�� � >�

��#$
�?� %  B�'(   (6) 

Where, 

>� � 48 C 10+��/D+,�  

>� � 48��/�+,�  

@� � 48��E+,/�+,�� 

@" � 48�"/�+,�  

A � 48�+,�/�+,E+, 

B" � &"��andB� � &�E+, 

It can be easily identified that except �+,and D+,, the 

parameters in the equations are too complicated and cannot 

be measured by any possible experimental methods. Thus 

in this foregoing discussion we classified these parameters 

as uncertain. We considered that the only possible 

measurable quantity is the biomass density (described 

before). Please note that all the parameters are 

dimensionless (varies between 0-1) and the biomass 

observable shown in Figure 1 was normalized with respect 

to the maximum thickness of the colony at the end of 72 

hours, which is 1256.2 µm. The biomass profile at 24 hours 

was used to fit the initial condition and partially inform the 

prior distribution of the parameters and the 24 hours profile 

was used for calibration. The following boundary and 

initial conditions were used in solving the partial 

differential equations previously introduced. 

Table 1.Boundary Conditions 

Left end Right end 


'(

2 � 0 '( � 0 


�

2 � 0 � � 0 


��

2 � 0 �� � 0 

 

Initial Conditions 

'(�1, 0� � FG5+��H�
, for 1 I 0.1 and 0 otherwise 

��1, 0� � 0 

���1, 0� � 0 
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3. Model Calibration and Numerical 

Results 

The inherent uncertainties in the previously derived 

model are the result of both parametric uncertainty and 

model structure inadequacies. Given that the normalized 

biomass is experimentally observable, the following 

measurement model will be used to calibrate our model. 

B�J �X� � B��2, θ, t� % εM�1�          (7) 

Here, B��x, θ, t� represents the normalized prediction 

of the model at a specific time t and distance from the 

center of the colony X, given a set of parameters 

θ � NV, K", α", D� , K�, D� , α�S  and B�J �2�  is the 

corresponding experimental data obtained using SAM. 

Possible missing interaction terms in the partial differential 

equations cause structural errors in the model that need to 

be quantified. To address this, a very common approach in 

the Bayesian literature initially suggested by Kennedy and 

O’Hagan [25], is to introduce a statistical model, εM, that 

can explain the discrepancy between model predictions and 

observations. This statistical model is essential to ensure a 

correct model calibration as well as to provide additional 

insights regarding the source and magnitude of additional 

model errors that we might have overlooked. The spatial 

errors in the biomass profile are assumed to be independent 

and identically distributed with a zero mean normal 

distribution.  

εM�1�~U�0, σ��              (8) 

The discrepancy model has to explain both the modeling 

errors and the measurement errors. At this initial 

development stage there is no prior information regarding 

the magnitude of any of the two error types, thus the 

variance of the normal distribution will be inferred from the 

data along with the parameters defining the growth model. 

Given our reliance on probability to represent uncertainty, 

we formulate this inference problem as a Bayesian update,  

pXθ, σ�YB�J Z � p�B�J |θ, σ��p�θ, σ��/p�B�J �    (9) 

Here, p�θ, σ�� is the prior probability density function 

(pdf) of the parameters and p�B�J |θ, σ�� is the likelihood 

function. It represents the likelihood of observing the data 

given the model and its uncertainty. The data B�J �
\B�J �1"�, B�J �1��, ] , B�J �1^�_ is a set of biomass profile 

readings corresponding to different distances from the 

center of the colony. Given our assumption that the biomass 

observations are spatially independent, the likelihood 

function is given by the product of individual likelihood 

functions 

pXB�J Yθ, σ�Z � ` pXB�J �1a�Yθ, σ�Z
^

ab"
 

� ∏ N�B�J �1a� � B��1a , θ, t�âb" , σ��   (10) 

The denominator in the Bayesian formula,p�B�J � is a 

normalization constant, and the posterior pdf 

pXθ, σ�YB�J Zis the Bayesian solution of the inverse problem, 

representing the desired estimate of the parameters with 

associated uncertainties. It is assumed that a priori the 

model parameters θ are independent of the variance σ� of 

the discrepancy model. 

p�θ, σ�� � p�θ�p�σ��           (11) 

In the current study we use a non-informative prior for the 

parameters, p�θ� e const., and we use the biomass profile 

at 24h to fit the initial condition and inform the prior pdf of 

the variance, and the data at 48h to infer the parameters of 

our model. The following model form defines the initial 

condition: 

B��x, 24h� � &G5lH�
              (12) 

The two parameters &and m, are estimated by minimizing 

the mean square error (MSE) between the biomass 

observations at 24h and model predictions. The cost function 

is minimized using the function fminunc in the optimization 

package of Octave [26]. The results of this optimization are 

shown in Figure 1(i) where the initial condition is given by 

& � 0.26and m � 344.33. The minimum MSE found is also 

used to inform the prior pdf of the variance that takes the 

form of an inverse gamma pdf. 

p�σ�� � pq
r�s� �σ��5s5"G5 t

u�            (13) 

 

Figure 2.Calibration of the biomass (i) by quantifying the uncertainty 

associated with all model parameters (a-h) in eq. (3) –(6). 

Here, Γ�. � is the gamma function, the shape parameter 

B � 10 and the scale parameter is given by the minimum 

MSE, namely w � 3.0553G � 05. Finally, having defined 

the likelihood function and the prior pdf, we can obtain 

samples from the posterior pdf using Markov Chain Monte 

Carlo (MCMC) methods. In this paper we have adopted the 

MCMC Delayed Rejection and Adaptive Metropolis [27], 

which adapts the proposal distribution both locally after 
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each rejection as well as globally using the past chain. The 

histogram corresponding to the posterior pdf of all eight 

parameters are given in the Figure 2(a)-(h). 

Calibrating the model does not guarantee that its outputs 

will be consistent with the data. It is therefore necessary 

that consistency of model outputs with the experimental 

observations be explicitly checked. The discrepancy 

between the data and model outputs was quantified in this 

study using posterior predictive checks [28]  such as 

determining whether the data lies inside the 90% credible 

interval of the posterior predictive pdf of '(. Based on the 

literature, we determined that appropriate for our use are 

highest posterior density (HPD) confidence intervals [29]. 

The 90% HPD interval is an interval or a set of intervals for 

which the probability of belonging to it is 90% and the 

density of all the points in the interval are greater than the 

density of the points outside the interval. If more than 10% 

of the data is not in the 90% HPD region, then the data 

would be considered an implausible outcome of the model. 

This is the plausibility criterion we used here and the 

conceptwas clearly similar to p-values and confidence 

intervals in classical statistics, though they differ in detail 

and interpretation. Finally, note that for multi-modal 

distributions, an HPD region may consist of multiple 

disjoint intervals [30]. In Figure 3 all three profiles, 

biomass, toxin and uptake were predicted at 48h with their 

associated uncertainties. The majority of biomass readings 

were within the 90% HPD region. 

Future work will focus on further strengthening the 

predictive capability of our current mathematical model. 

We are already conducting experiments that are designed 

tosimultaneously measure both the biomass and the nutrient 

uptake under various experimental settings to provide 

additional insight on the correlation between nutrient 

distribution, fungal biomass profiles and the spatiotemporal 

profiles of aflatoxin synthesis with a colony. The 

knowledge will significantly help in improving the 

predictive capability of our model and further reduce 

uncertainties.The same posterior predictive checks for 

consistencies between model predictions and predictive 

experimental data (as described in the current work) will be 

conducted in those future studies. 

4. Conclusion 

The main goal of the current work was to develop a 

mathematical model that can be used to effectively predict 

mycotoxin profiles in mold colonies. We used one of the 

most well-studied aflatoxin (a 

hepatocarcinogenicmycotoxin) producers, 

Aspergillusparasiticus to develop the predictive model. 

Based on a data set of just biomass profiles of the colonies 

growing in a medium with known nutrient concentration, we 

successfully quantified the profile of aflatoxin concentration 

in the fungal colonies. Obtaining such profiles with 

established ELISA or chromatography-based methods is 

tedious, time consuming, costlyand has occupational 

hazards of mycotoxin exposure. In addition the 

mathematical model can also predict several 

non-measurable parameters without altering or perturbing 

the specimens.  

 

Figure 3.Predictive results: a) Biomass density at the end of 48 hours 

which shows quite close agreement between actual SAM data and the 

predicted profile from the model, this gives confidence that the prediction of 

aflatoxin in the colony is also quite accurate b) prediction of aflatoxin 

profile in the colony, d) predicted uptake of nutrients by the colony.   

The use of uncertainty quantification should also allow 

the adaptability of our model for other mycotoxin producers. 

Except biomass, all other parameters in the model are 

assumed to be uncertain. Hence, we anticipate that 

irrespective of species, only the measurement of mycelial 

biomass profiles could lead to successful quantification of 

their mycotoxin profiles without any tedious wet laboratory 

experiments. 
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